o
    ohe                     @   s  d dl mZ ejdddZejdddZejdddZejdd	d
ZejdddZejdddZejdddZ	ejdddZ
ejdddZejdddZejdddZejdddZejdddZejdddZejddd Zejdd!d"Zejdd#d$Zejdd%d&Zejdd'd(Zejdd)d*Zejdd+d,Zejdd-d.Zejdd/d0Zejdd1d2Zejdd3d4Zejdd5d6Zejdd7d8Zejdd9d:Zejdd;d<Zejdd=d>Z ejdd?d@Z!ejddAdBZ"ejddCdDZ#ejddEdFZ$ejddGdHZ%ejddIdJZ&ejddKdLZ'ejddMdNZ(ejddOdPZ)ejddQdRZ*ejddSdTZ+ejddUdVZ,ejddWdXZ-ejddYdZZ.ejdd[d\Z/ejdd]d^Z0ejdd_d`Z1ejddadbZ2ejddcddZ3ejddedfZ4ejddgdhZ5ejddidjZ6ejddkdlZ7ejddmdnZ8ejddodpZ9ejddqdrZ:ejddsdtZ;ejddudvZ<ejddwdxZ=ejddydzZ>ejdd{d|Z?ejdd}d~Z@ejdddZAejdddZBejdddZCejdddZDejdddZEejdddZFejdddZGejdddZHejdddZIejdddZJejdddZKejdddZLejdddZMejdddZNejdddZOejdddZPejdddZQejdddZRejdddZSejdddZTejdddZUejdddZVejdddZWejdddZXejdddZYejdddZZejdddZ[ejdddZ\ejdddZ]ejdddZ^ejdddZ_ejdddZ`ejdddZaejdddZbejdddĄZcejdddƄZdejdddȄZeejdddʄZfejddd̄Zgejddd΄ZhejdddЄZiejddd҄ZjejdddԄZkejdddքZlejddd؄ZmejdddڄZnejddd܄ZoejdddބZpejdddZqejdddZrejdddZsejdddZtejdddZuejdddZvejdddZwejdddZxejdddZyejdddZzejdddZ{ejdddZ|ejdddZ}ejdddZ~ejdddZejdddZejddd ZejdddZejdddZejdddZejdddZejdd	d
ZejdddZejdddZejdddZejdddZejdddZejdddZejdddZejdddZejdddZejdddZejddd Zejdd!d"Zejdd#d$Zejdd%d&Zejdd'd(Zejdd)d*Zejdd+d,Zejdd-d.Zejdd/d0Zejdd1d2Zejdd3d4Zejdd5d6Zejdd7d8Zejdd9d:Zejdd;d<Zejdd=d>Zejdd?d@ZejddAdBZejddCdDZejddEdFZejddGdHZejddIdJZejddKdLZejddMdNZejddOdPZejddQdRZejddSdTZejddUdVZejddWdXZejddYdZZejdd[d\Zejdd]d^Zejdd_d`ZejddadbZejddcddZejddedfZejddgdhZejddidjZejddkdlZejddmdnZejddodpZejddqdrZejddsdtZejddudvZejddwdxZejddydzZejdd{d|Zejdd}d~ZejdddZejdddZejdddZejdddZejdddZejdddZejdddZdS (      )coreNc                 C   D   t jdd| gt dfdt dft dfdt dfid|dS )N int32__nv_clzint64
__nv_clzllTis_pure_builderr   extern_elementwisedtypearg0r    r   x/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/triton/language/extra/cuda/libdevice.pyclz      r   c                 C   r   )Nr   r   	__nv_popcr   __nv_popcllTr	   r   r   r   r   r   popc   r   r   c              	   C   sB   t jdd| ||gt dt dt dfdt dfid|dS )Nr   r   __nv_byte_permTr	   r   r   arg1arg2r   r   r   r   	byte_perm   s
   &r   c                 C   s   t jdd| |gt dt dfdt dft dt dfdt dft dt dfdt dft dt dfd	t dfid
|dS )Nr   r   
__nv_mulhiuint32__nv_umulhir   __nv_mul64hiuint64__nv_umul64hiTr	   r   r   r   r   r   r   r   mulhi      
r$   c                 C   V   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   
__nv_mul24r   __nv_umul24Tr	   r   r#   r   r   r   mul24(      
r)   c                 C   D   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   	__nv_brevr   __nv_brevllTr	   r   r   r   r   r   brev1   r   r.   c                 C   sh   t jdd| ||gt dt dt dfdt dft dt dt dfdt dfid|dS )Nr   r   r   __nv_sad	__nv_usadTr	   r   r   r   r   r   sad:      &&r1   c                 C   sp   t jdd| gt dfdt dft dfdt dft dfdt dft dfd	t dfid
|dS )Nr   r   __nv_absr   
__nv_llabsfp32
__nv_fabsffp64	__nv_fabsTr	   r   r   r   r   r   absC   s   r9   c                 C   r+   )Nr   r5   __nv_floorfr7   
__nv_floorTr	   r   r   r   r   r   floorN   r   r<   c              	   C   .   t jdd| gt dfdt dfid|dS )Nr   r7   __nv_rcp64hTr	   r   r   r   r   r   rcp64hW   
   r?   c                 C   r+   )Nr   r5   __nv_rsqrtfr7   
__nv_rsqrtTr	   r   r   r   r   r   rsqrt^   r   rC   c                 C   r+   )Nr   r7   	__nv_ceilr5   
__nv_ceilfTr	   r   r   r   r   r   ceilg   r   rF   c                 C   r+   )Nr   r7   
__nv_truncr5   __nv_truncfTr	   r   r   r   r   r   truncp   r   rI   c                 C   r+   )Nr   r5   
__nv_exp2fr7   	__nv_exp2Tr	   r   r   r   r   r   exp2y   r   rL   c              	   C   r=   )Nr   r5   __nv_saturatefTr	   r   r   r   r   r   	saturatef   r@   rN   c                 C   h   t jdd| ||gt dt dt dfdt dft dt dt dfdt dfid|dS )Nr   r5   __nv_fmaf_rnr7   __nv_fma_rnTr	   r   r   r   r   r   fma_rn   r2   rR   c                 C   rO   )Nr   r5   __nv_fmaf_rzr7   __nv_fma_rzTr	   r   r   r   r   r   fma_rz   r2   rU   c                 C   rO   )Nr   r5   __nv_fmaf_rdr7   __nv_fma_rdTr	   r   r   r   r   r   fma_rd   r2   rX   c                 C   rO   )Nr   r5   __nv_fmaf_rur7   __nv_fma_ruTr	   r   r   r   r   r   fma_ru   r2   r[   c              	   C   8   t jdd| |gt dt dfdt dfid|dS )Nr   r5   __nv_fast_fdividefTr	   r   r#   r   r   r   fast_dividef   
   r^   c                 C   r&   )Nr   r5   __nv_fdiv_rnr7   __nv_ddiv_rnTr	   r   r#   r   r   r   div_rn   r*   rb   c                 C   r&   )Nr   r5   __nv_fdiv_rzr7   __nv_ddiv_rzTr	   r   r#   r   r   r   div_rz   r*   re   c                 C   r&   )Nr   r5   __nv_fdiv_rdr7   __nv_ddiv_rdTr	   r   r#   r   r   r   div_rd   r*   rh   c                 C   r&   )Nr   r5   __nv_fdiv_rur7   __nv_ddiv_ruTr	   r   r#   r   r   r   div_ru   r*   rk   c                 C   r+   )Nr   r5   __nv_frcp_rnr7   __nv_drcp_rnTr	   r   r   r   r   r   rcp_rn   r   rn   c                 C   r+   )Nr   r5   __nv_frcp_rzr7   __nv_drcp_rzTr	   r   r   r   r   r   rcp_rz   r   rq   c                 C   r+   )Nr   r5   __nv_frcp_rdr7   __nv_drcp_rdTr	   r   r   r   r   r   rcp_rd   r   rt   c                 C   r+   )Nr   r5   __nv_frcp_rur7   __nv_drcp_ruTr	   r   r   r   r   r   rcp_ru   r   rw   c                 C   r+   )Nr   r5   __nv_fsqrt_rnr7   __nv_dsqrt_rnTr	   r   r   r   r   r   sqrt_rn   r   rz   c                 C   r+   )Nr   r5   __nv_fsqrt_rzr7   __nv_dsqrt_rzTr	   r   r   r   r   r   sqrt_rz  r   r}   c                 C   r+   )Nr   r5   __nv_fsqrt_rdr7   __nv_dsqrt_rdTr	   r   r   r   r   r   sqrt_rd  r   r   c                 C   r+   )Nr   r5   __nv_fsqrt_rur7   __nv_dsqrt_ruTr	   r   r   r   r   r   sqrt_ru  r   r   c                 C   r+   )Nr   r5   
__nv_sqrtfr7   	__nv_sqrtTr	   r   r   r   r   r   sqrt   r   r   c                 C   r&   )Nr   r7   __nv_dadd_rnr5   __nv_fadd_rnTr	   r   r#   r   r   r   add_rn)  r*   r   c                 C   r&   )Nr   r7   __nv_dadd_rzr5   __nv_fadd_rzTr	   r   r#   r   r   r   add_rz2  r*   r   c                 C   r&   )Nr   r7   __nv_dadd_rdr5   __nv_fadd_rdTr	   r   r#   r   r   r   add_rd;  r*   r   c                 C   r&   )Nr   r7   __nv_dadd_rur5   __nv_fadd_ruTr	   r   r#   r   r   r   add_ruD  r*   r   c                 C   r&   )Nr   r7   __nv_dmul_rnr5   __nv_fmul_rnTr	   r   r#   r   r   r   mul_rnM  r*   r   c                 C   r&   )Nr   r7   __nv_dmul_rzr5   __nv_fmul_rzTr	   r   r#   r   r   r   mul_rzV  r*   r   c                 C   r&   )Nr   r7   __nv_dmul_rdr5   __nv_fmul_rdTr	   r   r#   r   r   r   mul_rd_  r*   r   c                 C   r&   )Nr   r7   __nv_dmul_rur5   __nv_fmul_ruTr	   r   r#   r   r   r   mul_ruh  s    	r   c              	   C   .   t jdd| gt dfdt dfid|dS )Nr   r7   __nv_double2float_rnr5   Tr	   r   r   r   r   r   double2float_rnz  r@   r   c              	   C   r   )Nr   r7   __nv_double2float_rzr5   Tr	   r   r   r   r   r   double2float_rz  r@   r   c              	   C   r   )Nr   r7   __nv_double2float_rdr5   Tr	   r   r   r   r   r   double2float_rd  r@   r   c              	   C   r   )Nr   r7   __nv_double2float_rur5   Tr	   r   r   r   r   r   double2float_ru  r@   r   c              	   C   r   )Nr   r7   __nv_double2int_rnr   Tr	   r   r   r   r   r   double2int_rn  r@   r   c              	   C   r   )Nr   r7   __nv_double2int_rzr   Tr	   r   r   r   r   r   double2int_rz  r@   r   c              	   C   r   )Nr   r7   __nv_double2int_rdr   Tr	   r   r   r   r   r   double2int_rd  r@   r   c              	   C   r   )Nr   r7   __nv_double2int_rur   Tr	   r   r   r   r   r   double2int_ru  r@   r   c              	   C   r   )Nr   r7   __nv_double2uint_rnr   Tr	   r   r   r   r   r   double2uint_rn  r@   r   c              	   C   r   )Nr   r7   __nv_double2uint_rzr   Tr	   r   r   r   r   r   double2uint_rz  r@   r   c              	   C   r   )Nr   r7   __nv_double2uint_rdr   Tr	   r   r   r   r   r   double2uint_rd  r@   r   c              	   C   r   )Nr   r7   __nv_double2uint_rur   Tr	   r   r   r   r   r   double2uint_ru  r@   r   c              	   C   r   )Nr   r   __nv_int2double_rnr7   Tr	   r   r   r   r   r   int2double_rn  r@   r   c              	   C   r   )Nr   r   __nv_uint2double_rnr7   Tr	   r   r   r   r   r   uint2double_rn  r@   r   c              	   C   r   )Nr   r5   __nv_float2int_rnr   Tr	   r   r   r   r   r   float2int_rn  r@   r   c              	   C   r   )Nr   r5   __nv_float2int_rzr   Tr	   r   r   r   r   r   float2int_rz  r@   r   c              	   C   r   )Nr   r5   __nv_float2int_rdr   Tr	   r   r   r   r   r   float2int_rd  r@   r   c              	   C   r   )Nr   r5   __nv_float2int_rur   Tr	   r   r   r   r   r   float2int_ru  r@   r   c              	   C   r   )Nr   r5   __nv_float2uint_rnr   Tr	   r   r   r   r   r   float2uint_rn  r@   r   c              	   C   r   )Nr   r5   __nv_float2uint_rzr   Tr	   r   r   r   r   r   float2uint_rz  r@   r   c              	   C   r   )Nr   r5   __nv_float2uint_rdr   Tr	   r   r   r   r   r   float2uint_rd  r@   r   c              	   C   r   )Nr   r5   __nv_float2uint_rur   Tr	   r   r   r   r   r   float2uint_ru  r@   r   c              	   C   r   )Nr   r   __nv_int2float_rnr5   Tr	   r   r   r   r   r   int2float_rn  r@   r   c              	   C   r   )Nr   r   __nv_int2float_rzr5   Tr	   r   r   r   r   r   int2float_rz  r@   r   c              	   C   r   )Nr   r   __nv_int2float_rdr5   Tr	   r   r   r   r   r   int2float_rd"  r@   r   c              	   C   r   )Nr   r   __nv_int2float_rur5   Tr	   r   r   r   r   r   int2float_ru)  r@   r   c              	   C   r   )Nr   r   __nv_uint2float_rnr5   Tr	   r   r   r   r   r   uint2float_rn0  r@   r   c              	   C   r   )Nr   r   __nv_uint2float_rzr5   Tr	   r   r   r   r   r   uint2float_rz7  r@   r   c              	   C   r   )Nr   r   __nv_uint2float_rdr5   Tr	   r   r   r   r   r   uint2float_rd>  r@   r   c              	   C   r   )Nr   r   __nv_uint2float_rur5   Tr	   r   r   r   r   r   uint2float_ruE  r@   r   c              	   C   s8   t jdd| |gt dt dfdt dfid|dS )Nr   r   __nv_hiloint2doubler7   Tr	   r   r#   r   r   r   hiloint2doubleL  r_   r   c              	   C   r   )Nr   r7   __nv_double2lointr   Tr	   r   r   r   r   r   double2lointS  r@   r   c              	   C   r   )Nr   r7   __nv_double2hiintr   Tr	   r   r   r   r   r   double2hiintZ  r@   r   c              	   C   r   )Nr   r5   __nv_float2ll_rnr   Tr	   r   r   r   r   r   float2ll_rna  r@   r   c              	   C   r   )Nr   r5   __nv_float2ll_rzr   Tr	   r   r   r   r   r   float2ll_rzh  r@   r   c              	   C   r   )Nr   r5   __nv_float2ll_rdr   Tr	   r   r   r   r   r   float2ll_rdo  r@   r   c              	   C   r   )Nr   r5   __nv_float2ll_rur   Tr	   r   r   r   r   r   float2ll_ruv  r@   r   c              	   C   r   )Nr   r5   __nv_float2ull_rnr   Tr	   r   r   r   r   r   float2ull_rn}  r@   r   c              	   C   r   )Nr   r5   __nv_float2ull_rzr   Tr	   r   r   r   r   r   float2ull_rz  r@   r   c              	   C   r   )Nr   r5   __nv_float2ull_rdr   Tr	   r   r   r   r   r   float2ull_rd  r@   r   c              	   C   r   )Nr   r5   __nv_float2ull_rur   Tr	   r   r   r   r   r   float2ull_ru  r@   r   c              	   C   r   )Nr   r7   __nv_double2ll_rnr   Tr	   r   r   r   r   r   double2ll_rn  r@   r   c              	   C   r   )Nr   r7   __nv_double2ll_rzr   Tr	   r   r   r   r   r   double2ll_rz  r@   r   c              	   C   r   )Nr   r7   __nv_double2ll_rdr   Tr	   r   r   r   r   r   double2ll_rd  r@   r   c              	   C   r   )Nr   r7   __nv_double2ll_rur   Tr	   r   r   r   r   r   double2ll_ru  r@   r   c              	   C   r   )Nr   r7   __nv_double2ull_rnr   Tr	   r   r   r   r   r   double2ull_rn  r@   r   c              	   C   r   )Nr   r7   __nv_double2ull_rzr   Tr	   r   r   r   r   r   double2ull_rz  r@   r   c              	   C   r   )Nr   r7   __nv_double2ull_rdr   Tr	   r   r   r   r   r   double2ull_rd  r@   r   c              	   C   r   )Nr   r7   __nv_double2ull_rur   Tr	   r   r   r   r   r   double2ull_ru  r@   r  c              	   C   r   )Nr   r   __nv_ll2float_rnr5   Tr	   r   r   r   r   r   ll2float_rn  r@   r  c              	   C   r   )Nr   r   __nv_ll2float_rzr5   Tr	   r   r   r   r   r   ll2float_rz  r@   r  c              	   C   r   )Nr   r   __nv_ll2float_rdr5   Tr	   r   r   r   r   r   ll2float_rd  r@   r  c              	   C   r   )Nr   r   __nv_ll2float_rur5   Tr	   r   r   r   r   r   ll2float_ru  r@   r	  c              	   C   r   )Nr   r!   __nv_ull2float_rnr5   Tr	   r   r   r   r   r   ull2float_rn  r@   r  c              	   C   r   )Nr   r!   __nv_ull2float_rzr5   Tr	   r   r   r   r   r   ull2float_rz  r@   r  c              	   C   r   )Nr   r!   __nv_ull2float_rdr5   Tr	   r   r   r   r   r   ull2float_rd  r@   r  c              	   C   r   )Nr   r!   __nv_ull2float_rur5   Tr	   r   r   r   r   r   ull2float_ru  r@   r  c              	   C   r   )Nr   r   __nv_ll2double_rnr7   Tr	   r   r   r   r   r   ll2double_rn	  r@   r  c              	   C   r   )Nr   r   __nv_ll2double_rzr7   Tr	   r   r   r   r   r   ll2double_rz  r@   r  c              	   C   r   )Nr   r   __nv_ll2double_rdr7   Tr	   r   r   r   r   r   ll2double_rd  r@   r  c              	   C   r   )Nr   r   __nv_ll2double_rur7   Tr	   r   r   r   r   r   ll2double_ru  r@   r  c              	   C   r   )Nr   r!   __nv_ull2double_rnr7   Tr	   r   r   r   r   r   ull2double_rn%  r@   r  c              	   C   r   )Nr   r!   __nv_ull2double_rzr7   Tr	   r   r   r   r   r   ull2double_rz,  r@   r  c              	   C   r   )Nr   r!   __nv_ull2double_rdr7   Tr	   r   r   r   r   r   ull2double_rd3  r@   r  c              	   C   r   )Nr   r!   __nv_ull2double_rur7   Tr	   r   r   r   r   r   ull2double_ru:  r@   r!  c              	   C   r   )Nr   r   __nv_int_as_floatr5   Tr	   r   r   r   r   r   int_as_floatA  r@   r#  c              	   C   r   )Nr   r5   __nv_float_as_intr   Tr	   r   r   r   r   r   float_as_intH  r@   r%  c              	   C   r   )Nr   r   __nv_uint_as_floatr5   Tr	   r   r   r   r   r   uint_as_floatO  r@   r'  c              	   C   r   )Nr   r5   __nv_float_as_uintr   Tr	   r   r   r   r   r   float_as_uintV  r@   r)  c              	   C   r   )Nr   r   __nv_longlong_as_doubler7   Tr	   r   r   r   r   r   longlong_as_double]  r@   r+  c              	   C   r   )Nr   r7   __nv_double_as_longlongr   Tr	   r   r   r   r   r   double_as_longlongd  r@   r-  c              	   C   r=   )Nr   r5   __nv_fast_sinfTr	   r   r   r   r   r   	fast_sinfk  r@   r/  c              	   C   r=   )Nr   r5   __nv_fast_cosfTr	   r   r   r   r   r   	fast_cosfr  r@   r1  c              	   C   r=   )Nr   r5   __nv_fast_log2fTr	   r   r   r   r   r   
fast_log2fy  r@   r3  c              	   C   r=   )Nr   r5   __nv_fast_logfTr	   r   r   r   r   r   	fast_logf  r@   r5  c              	   C   r=   )Nr   r5   __nv_fast_expfTr	   r   r   r   r   r   	fast_expf  r@   r7  c              	   C   r=   )Nr   r5   __nv_fast_tanfTr	   r   r   r   r   r   	fast_tanf  r@   r9  c              	   C   r=   )Nr   r5   __nv_fast_exp10fTr	   r   r   r   r   r   fast_exp10f  r@   r;  c              	   C   r=   )Nr   r5   __nv_fast_log10fTr	   r   r   r   r   r   fast_log10f  r@   r=  c              	   C   r\   )Nr   r5   __nv_fast_powfTr	   r   r#   r   r   r   	fast_powf  r_   r?  c                 C   r&   )Nr   r   	__nv_haddr   
__nv_uhaddTr	   r   r#   r   r   r   hadd  r*   rB  c                 C   r&   )Nr   r   
__nv_rhaddr   __nv_urhaddTr	   r   r#   r   r   r   rhadd  r*   rE  c                 C   r&   )Nr   r5   __nv_fsub_rnr7   __nv_dsub_rnTr	   r   r#   r   r   r   sub_rn  r*   rH  c                 C   r&   )Nr   r5   __nv_fsub_rzr7   __nv_dsub_rzTr	   r   r#   r   r   r   sub_rz  r*   rK  c                 C   r&   )Nr   r5   __nv_fsub_rdr7   __nv_dsub_rdTr	   r   r#   r   r   r   sub_rd  r*   rN  c                 C   r&   )Nr   r5   __nv_fsub_rur7   __nv_dsub_ruTr	   r   r#   r   r   r   sub_ru  r*   rQ  c              	   C   r=   )Nr   r5   __nv_frsqrt_rnTr	   r   r   r   r   r   rsqrt_rn  s   rS  c                 C   r   )Nr   r   __nv_ffsr   
__nv_ffsllTr	   r   r   r   r   r   ffs     rV  c                 C   r+   )Nr   r5   
__nv_rintfr7   	__nv_rintTr	   r   r   r   r   r   rint  rW  rZ  c                 C   D   t jdd| gt dfdt dft dfdt dfid|dS )	Nr   r5   __nv_llrintfr   r7   __nv_llrintTr	   r   r   r   r   r   llrint  rW  r^  c                 C   r+   )Nr   r5   __nv_nearbyintfr7   __nv_nearbyintTr	   r   r   r   r   r   	nearbyint
  rW  ra  c                 C   P   t jdd| gt dfdt dft dfdt dfid|djt j|d	S )
Nr   r5   __nv_isnanfr   r7   __nv_isnandTr	   r   r   r   r   toint1r   r   r   r   isnan  s   ri  c                 C   r[  )	Nr   r5   __nv_signbitfr   r7   __nv_signbitdTr	   r   r   r   r   r   signbit   rW  rl  c                 C   r&   )Nr   r5   __nv_copysignfr7   __nv_copysignTr	   r   r#   r   r   r   copysign+  r*   ro  c              	   C   :   t jdd| gt dfdt dfid|djt j|dS )Nr   r5   __nv_finitefr   Tr	   re  rf  r   r   r   r   finitef4     rr  c                 C   rb  )
Nr   r5   __nv_isinffr   r7   __nv_isinfdTr	   re  rf  r   r   r   r   isinf;  s   rv  c                 C   r&   )Nr   r5   __nv_nextafterfr7   __nv_nextafterTr	   r   r#   r   r   r   	nextafterD  r*   ry  c                 C   r+   )Nr   r5   	__nv_sinfr7   __nv_sinTr	   r   r   r   r   r   sinM  r   r|  c                 C   r+   )Nr   r5   	__nv_cosfr7   __nv_cosTr	   r   r   r   r   r   cosV  r   r  c                 C   r+   )Nr   r5   __nv_sinpifr7   
__nv_sinpiTr	   r   r   r   r   r   sinpi_  r   r  c                 C   r+   )Nr   r5   __nv_cospifr7   
__nv_cospiTr	   r   r   r   r   r   cospih  r   r  c                 C   r+   )Nr   r5   	__nv_tanfr7   __nv_tanTr	   r   r   r   r   r   tanq  r   r  c                 C   r+   )Nr   r5   
__nv_log2fr7   	__nv_log2Tr	   r   r   r   r   r   log2z  r   r  c                 C   r+   )Nr   r5   	__nv_expfr7   __nv_expTr	   r   r   r   r   r   exp  r   r  c                 C   r+   )Nr   r5   __nv_exp10fr7   
__nv_exp10Tr	   r   r   r   r   r   exp10  r   r  c                 C   r+   )Nr   r5   
__nv_coshfr7   	__nv_coshTr	   r   r   r   r   r   cosh  r   r  c                 C   r+   )Nr   r5   
__nv_sinhfr7   	__nv_sinhTr	   r   r   r   r   r   sinh  r   r  c                 C   r+   )Nr   r5   
__nv_tanhfr7   	__nv_tanhTr	   r   r   r   r   r   tanh  r   r  c                 C   r&   )Nr   r5   __nv_atan2fr7   
__nv_atan2Tr	   r   r#   r   r   r   atan2  r*   r  c                 C   r+   )Nr   r5   
__nv_atanfr7   	__nv_atanTr	   r   r   r   r   r   atan  r   r  c                 C   r+   )Nr   r5   
__nv_asinfr7   	__nv_asinTr	   r   r   r   r   r   asin  r   r  c                 C   r+   )Nr   r5   
__nv_acosfr7   	__nv_acosTr	   r   r   r   r   r   acos  r   r  c                 C   r+   )Nr   r5   	__nv_logfr7   __nv_logTr	   r   r   r   r   r   log  r   r  c                 C   r+   )Nr   r5   __nv_log10fr7   
__nv_log10Tr	   r   r   r   r   r   log10  r   r  c                 C   r+   )Nr   r5   __nv_log1pfr7   
__nv_log1pTr	   r   r   r   r   r   log1p  r   r  c                 C   r+   )Nr   r5   __nv_acoshfr7   
__nv_acoshTr	   r   r   r   r   r   acosh  r   r  c                 C   r+   )Nr   r5   __nv_asinhfr7   
__nv_asinhTr	   r   r   r   r   r   asinh  r   r  c                 C   r+   )Nr   r5   __nv_atanhfr7   
__nv_atanhTr	   r   r   r   r   r   atanh  r   r  c                 C   r+   )Nr   r5   __nv_expm1fr7   
__nv_expm1Tr	   r   r   r   r   r   expm1
  r   r  c                 C   r&   )Nr   r5   __nv_hypotfr7   
__nv_hypotTr	   r   r#   r   r   r   hypot  r*   r  c                 C   r&   )Nr   r5   __nv_rhypotfr7   __nv_rhypotTr	   r   r#   r   r   r   rhypot  r*   r  c                 C   rO   )Nr   r5   __nv_norm3dfr7   __nv_norm3dTr	   r   r   r   r   r   norm3d%  r2   r  c                 C   rO   )Nr   r5   __nv_rnorm3dfr7   __nv_rnorm3dTr	   r   r   r   r   r   rnorm3d.  r2   r  c                 C   z   t jdd| |||gt dt dt dt dfdt dft dt dt dt dfdt dfid|dS )Nr   r5   __nv_norm4dfr7   __nv_norm4dTr	   r   r   r   r   arg3r   r   r   r   norm4d7     ""r  c                 C   r  )Nr   r5   __nv_rnorm4dfr7   __nv_rnorm4dTr	   r   r  r   r   r   rnorm4dB  r  r  c                 C   r+   )Nr   r5   
__nv_cbrtfr7   	__nv_cbrtTr	   r   r   r   r   r   cbrtM  r   r  c                 C   r+   )Nr   r5   __nv_rcbrtfr7   
__nv_rcbrtTr	   r   r   r   r   r   rcbrtV  r   r  c                 C   r+   )Nr   r5   __nv_j0fr7   __nv_j0Tr	   r   r   r   r   r   j0_     r  c                 C   r+   )Nr   r5   __nv_j1fr7   __nv_j1Tr	   r   r   r   r   r   j1g  r  r  c                 C   r+   )Nr   r5   __nv_y0fr7   __nv_y0Tr	   r   r   r   r   r   y0o  r  r  c                 C   r+   )Nr   r5   __nv_y1fr7   __nv_y1Tr	   r   r   r   r   r   y1w  r  r  c                 C   V   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )	Nr   r   r5   __nv_ynfr7   __nv_ynTr	   r   r#   r   r   r   yn  r*   r  c                 C   r  )	Nr   r   r5   __nv_jnfr7   __nv_jnTr	   r   r#   r   r   r   jn  r*   r  c                 C   r+   )Nr   r5   __nv_cyl_bessel_i0fr7   __nv_cyl_bessel_i0Tr	   r   r   r   r   r   cyl_bessel_i0  r   r  c                 C   r+   )Nr   r5   __nv_cyl_bessel_i1fr7   __nv_cyl_bessel_i1Tr	   r   r   r   r   r   cyl_bessel_i1  r   r  c                 C   r+   )Nr   r5   	__nv_erffr7   __nv_erfTr	   r   r   r   r   r   erf  r   r  c                 C   r+   )Nr   r5   __nv_erfinvfr7   __nv_erfinvTr	   r   r   r   r   r   erfinv  r   r  c                 C   r+   )Nr   r5   
__nv_erfcfr7   	__nv_erfcTr	   r   r   r   r   r   erfc  r   r  c                 C   r+   )Nr   r5   __nv_erfcxfr7   
__nv_erfcxTr	   r   r   r   r   r   erfcx  r   r  c                 C   r+   )Nr   r5   __nv_erfcinvfr7   __nv_erfcinvTr	   r   r   r   r   r   erfcinv  r   r   c                 C   r+   )Nr   r5   __nv_normcdfinvfr7   __nv_normcdfinvTr	   r   r   r   r   r   
normcdfinv  r   r  c                 C   r+   )Nr   r5   __nv_normcdffr7   __nv_normcdfTr	   r   r   r   r   r   normcdf  r   r  c                 C   r+   )Nr   r5   __nv_lgammafr7   __nv_lgammaTr	   r   r   r   r   r   lgamma  r   r	  c                 C   V   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )	Nr   r5   r   __nv_ldexpfr7   
__nv_ldexpTr	   r   r#   r   r   r   ldexp  r*   r  c                 C   r
  )	Nr   r5   r   __nv_scalbnfr7   __nv_scalbnTr	   r   r#   r   r   r   scalbn  r*   r  c                 C   r&   )Nr   r5   
__nv_fmodfr7   	__nv_fmodTr	   r   r#   r   r   r   fmod  r*   r  c                 C   r&   )Nr   r5   __nv_remainderfr7   __nv_remainderTr	   r   r#   r   r   r   	remainder  r*   r  c                 C   rO   )Nr   r5   	__nv_fmafr7   __nv_fmaTr	   r   r   r   r   r   fma  r2   r  c                 C   s   t jdd| |gt dt dfdt dft dt dfdt dft dt dfdt dft dt dfdt dfid	|d
S )Nr   r5   r   
__nv_powifr7   	__nv_powi	__nv_powf__nv_powTr	   r   r#   r   r   r   pow  r%   r  c                 C   r+   )Nr   r5   __nv_tgammafr7   __nv_tgammaTr	   r   r   r   r   r   tgamma#  r   r!  c                 C   r+   )Nr   r5   __nv_roundfr7   
__nv_roundTr	   r   r   r   r   r   round,  r   r$  c                 C   r[  )	Nr   r5   __nv_llroundfr   r7   __nv_llroundTr	   r   r   r   r   r   llround5  r   r'  c                 C   r&   )Nr   r5   
__nv_fdimfr7   	__nv_fdimTr	   r   r#   r   r   r   fdim>  r*   r*  c                 C   r[  )	Nr   r5   __nv_ilogbfr   r7   
__nv_ilogbTr	   r   r   r   r   r   ilogbG  r   r-  c                 C   r+   )Nr   r5   
__nv_logbfr7   	__nv_logbTr	   r   r   r   r   r   logbP  r   r0  c              	   C   rp  )Nr   r7   __nv_isfinitedr   Tr	   re  rf  r   r   r   r   	isfinitedY  rs  r2  )N)triton.languager   externr   r   r   r$   r)   r.   r1   r9   r<   r?   rC   rF   rI   rL   rN   rR   rU   rX   r[   r^   rb   re   rh   rk   rn   rq   rt   rw   rz   r}   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r  r  r  r  r	  r  r  r  r  r  r  r  r  r  r  r  r!  r#  r%  r'  r)  r+  r-  r/  r1  r3  r5  r7  r9  r;  r=  r?  rB  rE  rH  rK  rN  rQ  rS  rV  rZ  r^  ra  ri  rl  ro  rr  rv  ry  r|  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r  r  r	  r  r  r  r  r  r  r!  r$  r'  r*  r-  r0  r2  r   r   r   r   <module>   s   










