# coding=utf-8
# Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ViT MSN (masked siamese network) model."""

import collections.abc
from typing import Callable, Dict, List, Optional, Set, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
    torch_int,
)
from .configuration_vit_msn import ViTMSNConfig


logger = logging.get_logger(__name__)


_CONFIG_FOR_DOC = "ViTMSNConfig"
_CHECKPOINT_FOR_DOC = "facebook/vit-msn-small"


class ViTMSNEmbeddings(nn.Module):
    """
    Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
    """

    def __init__(self, config: ViTMSNConfig, use_mask_token: bool = False) -> None:
        super().__init__()

        self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
        self.patch_embeddings = ViTMSNPatchEmbeddings(config)
        num_patches = self.patch_embeddings.num_patches
        self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.patch_size = config.patch_size
        self.config = config

    # Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding
    def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
        """
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
        images. This method is also adapted to support torch.jit tracing.

        Adapted from:
        - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
        - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
        """

        num_patches = embeddings.shape[1] - 1
        num_positions = self.position_embeddings.shape[1] - 1

        # always interpolate when tracing to ensure the exported model works for dynamic input shapes
        if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
            return self.position_embeddings

        class_pos_embed = self.position_embeddings[:, :1]
        patch_pos_embed = self.position_embeddings[:, 1:]

        dim = embeddings.shape[-1]

        new_height = height // self.patch_size
        new_width = width // self.patch_size

        sqrt_num_positions = torch_int(num_positions**0.5)
        patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)

        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            size=(new_height, new_width),
            mode="bicubic",
            align_corners=False,
        )

        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)

        return torch.cat((class_pos_embed, patch_pos_embed), dim=1)

    def forward(
        self,
        pixel_values: torch.Tensor,
        bool_masked_pos: Optional[torch.BoolTensor] = None,
        interpolate_pos_encoding: bool = False,
    ) -> torch.Tensor:
        batch_size, num_channels, height, width = pixel_values.shape
        embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)

        if bool_masked_pos is not None:
            seq_length = embeddings.shape[1]
            mask_tokens = self.mask_token.expand(batch_size, seq_length, -1)
            # replace the masked visual tokens by mask_tokens
            mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
            embeddings = embeddings * (1.0 - mask) + mask_tokens * mask

        # add the [CLS] token to the embedded patch tokens
        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        embeddings = torch.cat((cls_tokens, embeddings), dim=1)

        # add positional encoding to each token
        if interpolate_pos_encoding:
            embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
        else:
            embeddings = embeddings + self.position_embeddings

        embeddings = self.dropout(embeddings)

        return embeddings


# Copied from transformers.models.vit.modeling_vit.ViTPatchEmbeddings with ViT->ViTMSN
class ViTMSNPatchEmbeddings(nn.Module):
    """
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    """

    def __init__(self, config):
        super().__init__()
        image_size, patch_size = config.image_size, config.patch_size
        num_channels, hidden_size = config.num_channels, config.hidden_size

        image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
        patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.num_patches = num_patches

        self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)

    def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
        batch_size, num_channels, height, width = pixel_values.shape
        if num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
                f" Expected {self.num_channels} but got {num_channels}."
            )
        if not interpolate_pos_encoding:
            if height != self.image_size[0] or width != self.image_size[1]:
                raise ValueError(
                    f"Input image size ({height}*{width}) doesn't match model"
                    f" ({self.image_size[0]}*{self.image_size[1]})."
                )
        embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
        return embeddings


# Copied from transformers.models.vit.modeling_vit.eager_attention_forward
def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    # Take the dot product between "query" and "key" to get the raw attention scores.
    attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling

    # Normalize the attention scores to probabilities.
    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)

    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)

    # Mask heads if we want to
    if attention_mask is not None:
        attn_weights = attn_weights * attention_mask

    attn_output = torch.matmul(attn_weights, value)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->ViTMSN
class ViTMSNSelfAttention(nn.Module):
    def __init__(self, config: ViTMSNConfig) -> None:
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
                f"heads {config.num_attention_heads}."
            )

        self.config = config
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.dropout_prob = config.attention_probs_dropout_prob
        self.scaling = self.attention_head_size**-0.5
        self.is_causal = False

        self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
        self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
        self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        query_layer = self.transpose_for_scores(self.query(hidden_states))

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and output_attentions:
                logger.warning_once(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )
            else:
                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        context_layer, attention_probs = attention_interface(
            self,
            query_layer,
            key_layer,
            value_layer,
            head_mask,
            is_causal=self.is_causal,
            scaling=self.scaling,
            dropout=0.0 if not self.training else self.dropout_prob,
        )

        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.reshape(new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs


# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->ViTMSN
class ViTMSNSelfOutput(nn.Module):
    """
    The residual connection is defined in ViTMSNLayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    """

    def __init__(self, config: ViTMSNConfig) -> None:
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return hidden_states


# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->ViTMSN
class ViTMSNAttention(nn.Module):
    def __init__(self, config: ViTMSNConfig) -> None:
        super().__init__()
        self.attention = ViTMSNSelfAttention(config)
        self.output = ViTMSNSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads: Set[int]) -> None:
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.attention.query = prune_linear_layer(self.attention.query, index)
        self.attention.key = prune_linear_layer(self.attention.key, index)
        self.attention.value = prune_linear_layer(self.attention.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
        self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        self_outputs = self.attention(hidden_states, head_mask, output_attentions)

        attention_output = self.output(self_outputs[0], hidden_states)

        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->ViTMSN
class ViTMSNIntermediate(nn.Module):
    def __init__(self, config: ViTMSNConfig) -> None:
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)

        return hidden_states


# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->ViTMSN
class ViTMSNOutput(nn.Module):
    def __init__(self, config: ViTMSNConfig) -> None:
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        hidden_states = hidden_states + input_tensor

        return hidden_states


# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->ViTMSN, VIT->VITMSN
class ViTMSNLayer(nn.Module):
    """This corresponds to the Block class in the timm implementation."""

    def __init__(self, config: ViTMSNConfig) -> None:
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = ViTMSNAttention(config)
        self.intermediate = ViTMSNIntermediate(config)
        self.output = ViTMSNOutput(config)
        self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        self_attention_outputs = self.attention(
            self.layernorm_before(hidden_states),  # in ViTMSN, layernorm is applied before self-attention
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        # first residual connection
        hidden_states = attention_output + hidden_states

        # in ViTMSN, layernorm is also applied after self-attention
        layer_output = self.layernorm_after(hidden_states)
        layer_output = self.intermediate(layer_output)

        # second residual connection is done here
        layer_output = self.output(layer_output, hidden_states)

        outputs = (layer_output,) + outputs

        return outputs


# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->ViTMSN
class ViTMSNEncoder(nn.Module):
    def __init__(self, config: ViTMSNConfig) -> None:
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([ViTMSNLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ) -> Union[tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    layer_head_mask,
                    output_attentions,
                )
            else:
                layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class ViTMSNPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = ViTMSNConfig
    base_model_prefix = "vit"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True
    _no_split_modules = ["ViTMSNAttention", "ViTMSNSdpaAttention"]
    _supports_sdpa = True
    _supports_flash_attn_2 = True

    # todo: Resort to https://github.com/facebookresearch/msn/blob/main/src/deit.py#L200-#L211
    # when creating pre-training scripts.
    def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, ViTMSNEmbeddings):
            module.cls_token.data.zero_()
            module.position_embeddings.data.zero_()
            if module.mask_token is not None:
                module.mask_token.data.zero_()


VIT_MSN_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`ViTMSNConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

VIT_MSN_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
            for details.

        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        interpolate_pos_encoding (`bool`, *optional*):
            Whether to interpolate the pre-trained position encodings.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare ViTMSN Model outputting raw hidden-states without any specific head on top.",
    VIT_MSN_START_DOCSTRING,
)
class ViTMSNModel(ViTMSNPreTrainedModel):
    def __init__(self, config: ViTMSNConfig, use_mask_token: bool = False):
        super().__init__(config)
        self.config = config

        self.embeddings = ViTMSNEmbeddings(config, use_mask_token=use_mask_token)
        self.encoder = ViTMSNEncoder(config)

        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> ViTMSNPatchEmbeddings:
        return self.embeddings.patch_embeddings

    def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(VIT_MSN_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        bool_masked_pos: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, BaseModelOutput]:
        r"""
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, ViTMSNModel
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-msn-small")
        >>> model = ViTMSNModel.from_pretrained("facebook/vit-msn-small")
        >>> inputs = image_processor(images=image, return_tensors="pt")
        >>> with torch.no_grad():
        ...     outputs = model(**inputs)
        >>> last_hidden_states = outputs.last_hidden_state
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
        )

        encoder_outputs = self.encoder(
            embedding_output,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        sequence_output = self.layernorm(sequence_output)

        if not return_dict:
            head_outputs = (sequence_output,)
            return head_outputs + encoder_outputs[1:]

        return BaseModelOutput(
            last_hidden_state=sequence_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


# Caution: We don't have the weights for the classification head yet. This class
# is here for the users that are interested to fine-tune the base model (ViTMSNModel).
@add_start_docstrings(
    """
    ViTMSN Model with an image classification head on top e.g. for ImageNet.
    """,
    VIT_MSN_START_DOCSTRING,
)
class ViTMSNForImageClassification(ViTMSNPreTrainedModel):
    def __init__(self, config: ViTMSNConfig) -> None:
        super().__init__(config)

        self.num_labels = config.num_labels
        self.vit = ViTMSNModel(config)

        # Classifier head
        self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(VIT_MSN_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, ImageClassifierOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, ViTMSNForImageClassification
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> torch.manual_seed(2)  # doctest: +IGNORE_RESULT

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-msn-small")
        >>> model = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small")

        >>> inputs = image_processor(images=image, return_tensors="pt")
        >>> with torch.no_grad():
        ...     logits = model(**inputs).logits
        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_label = logits.argmax(-1).item()
        >>> print(model.config.id2label[predicted_label])
        tusker
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.vit(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            interpolate_pos_encoding=interpolate_pos_encoding,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.classifier(sequence_output[:, 0, :])

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return ImageClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


__all__ = ["ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel"]
