# coding=utf-8
# Copyright 2023 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VipLlava model configuration"""

from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING, AutoConfig


logger = logging.get_logger(__name__)


class VipLlavaConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`VipLlavaForConditionalGeneration`]. It is used to instantiate an
    VipLlava model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the VipLlava-9B.

    e.g. [ybelkada/vip-llava-7b-hf](https://huggingface.co/ybelkada/vip-llava-7b-hf)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`VipLlavaVisionConfig`,  *optional*):
            Custom vision config or dict
        text_config (`Union[AutoConfig, dict]`, *optional*):
            The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
        image_token_index (`int`, *optional*, defaults to 32000):
            The image token index to encode the image prompt.
        projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
            The activation function used by the multimodal projector.
        projector_layernorm_eps (`float`, *optional*, defaults to 1e-05):
            The layer norm epsilon of the projector layernorm
        vision_feature_layers (`Union[int, List[int]]`, *optional*, defaults to `[-2, -5, -8, -11, 6]`):
            The vision feature layer, or list of layers to select the vision features from.
        image_seq_length (`int`, *optional*, defaults to 576):
            Sequence length of one image embedding.

    Example:

    ```python
    >>> from transformers import VipLlavaForConditionalGeneration, VipLlavaConfig, CLIPVisionConfig, LlamaConfig

    >>> # Initializing a CLIP-vision config
    >>> vision_config = CLIPVisionConfig()

    >>> # Initializing a Llama config
    >>> text_config = LlamaConfig()

    >>> # Initializing a VipLlava vipllava-7b style configuration
    >>> configuration = VipLlavaConfig(vision_config, text_config)

    >>> # Initializing a model from the vipllava-7b style configuration
    >>> model = VipLlavaForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "vipllava"
    sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}

    def __init__(
        self,
        vision_config=None,
        text_config=None,
        image_token_index=32000,
        projector_hidden_act="gelu",
        projector_layernorm_eps=1e-5,
        vision_feature_layers=[-2, -5, -8, -11, 6],
        image_seq_length=576,
        **kwargs,
    ):
        self.image_token_index = image_token_index
        self.projector_hidden_act = projector_hidden_act
        self.projector_layernorm_eps = projector_layernorm_eps
        self.vision_feature_layers = vision_feature_layers
        self.image_seq_length = image_seq_length
        self.vision_config = vision_config

        if isinstance(self.vision_config, dict):
            vision_config["model_type"] = (
                vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
            )
            self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
        elif vision_config is None:
            self.vision_config = CONFIG_MAPPING["clip_vision_model"](
                intermediate_size=4096,
                hidden_size=1024,
                patch_size=14,
                image_size=336,
                num_hidden_layers=24,
                num_attention_heads=16,
                vocab_size=32000,
                projection_dim=768,
            )

        if isinstance(text_config, dict):
            text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
            text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
        elif text_config is None:
            text_config = CONFIG_MAPPING["llama"]()

        self.text_config = text_config

        super().__init__(**kwargs)


__all__ = ["VipLlavaConfig"]
