# coding=utf-8
# Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Starcoder2 model."""

from typing import Callable, List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
    BaseModelOutputWithPast,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import add_start_docstrings_to_model_forward, can_return_tuple, logging
from ..mistral.modeling_mistral import (
    MistralAttention,
    MistralDecoderLayer,
    MistralForCausalLM,
    MistralForSequenceClassification,
    MistralForTokenClassification,
    MistralModel,
    apply_rotary_pos_emb,
    eager_attention_forward,
)
from .configuration_starcoder2 import Starcoder2Config


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "Starcoder2Config"
_CHECKPOINT_FOR_DOC = "bigcode/starcoder2-7b"


class Starcoder2MLP(nn.Module):
    def __init__(self, config: Starcoder2Config):
        super().__init__()
        embed_dim = config.hidden_size
        self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias)
        self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias)
        self.act = ACT2FN[config.hidden_act]
        self.residual_dropout = config.residual_dropout

    def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
        hidden_states = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.c_proj(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training)
        return hidden_states


class Starcoder2Attention(MistralAttention):
    def __init__(self, config: Starcoder2Config, layer_idx: Optional[int] = None):
        super().__init__()
        self.residual_dropout = config.residual_dropout
        self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias)
        self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
        self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
        self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
                logger.warning_once(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )
            else:
                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            sliding_window=getattr(self.config, "sliding_window", None),  # diff with Llama
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        attn_output = nn.functional.dropout(
            attn_output, p=self.residual_dropout, training=self.training
        )  # diff with Llama

        return attn_output, attn_weights


class Starcoder2DecoderLayer(MistralDecoderLayer):
    def __init__(self, config: Starcoder2Config, layer_idx: int):
        super().__init__(self)
        self.self_attn = Starcoder2Attention(config=config, layer_idx=layer_idx)
        self.mlp = Starcoder2MLP(config)
        self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)


STARCODER2_INPUTS_DOCSTRING = None  # will be automatically redefined


class Starcoder2Model(MistralModel):
    def __init__(self, config: Starcoder2Config):
        super().__init__(config)
        self.layers = nn.ModuleList(
            [Starcoder2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
        self.embedding_dropout = config.embedding_dropout

    @can_return_tuple
    @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
    ) -> BaseModelOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )

        hidden_states = inputs_embeds
        hidden_states = nn.functional.dropout(
            hidden_states, p=self.embedding_dropout, training=self.training
        )  # main diff with Llama

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        for decoder_layer in self.layers[: self.config.num_hidden_layers]:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=causal_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **flash_attn_kwargs,
            )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


class Starcoder2ForCausalLM(MistralForCausalLM):
    pass


class Starcoder2ForSequenceClassification(MistralForSequenceClassification):
    pass


class Starcoder2ForTokenClassification(MistralForTokenClassification):
    pass


__all__ = [
    "Starcoder2ForCausalLM",
    "Starcoder2Model",
    "Starcoder2PreTrainedModel",  # noqa: F822
    "Starcoder2ForSequenceClassification",
    "Starcoder2ForTokenClassification",
]
