# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for SigLIP2."""

import math
from functools import lru_cache
from typing import List, Optional, Tuple, Union

import numpy as np

from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import (
    convert_to_rgb,
    resize,
    to_channel_dimension_format,
)
from ...image_utils import (
    ChannelDimension,
    ImageInput,
    PILImageResampling,
    infer_channel_dimension_format,
    is_scaled_image,
    make_flat_list_of_images,
    to_numpy_array,
    valid_images,
    validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging


logger = logging.get_logger(__name__)


if is_vision_available():
    from PIL import Image


@lru_cache(maxsize=256)
def get_image_size_for_max_num_patches(
    image_height: int, image_width: int, patch_size: int, max_num_patches: int, eps: float = 1e-5
) -> Tuple[int, int]:
    """
    Determine image size based on max number of patches, ensure dimensions are divisible by patch size and image is at least 1 patch.

    Args:
        image_height (`int`):
            Original image height.
        image_width (`int`):
            Original image width.
        patch_size (`int`):
            Patch size for processing.
        max_num_patches (`int`):
            Maximum number of patches.
        eps (`float`):
            Small threshold for binary search.

    Returns:
        Tuple: (target_height, target_width)
    """

    def get_scaled_image_size(scale: float, size: int, patch_size: int) -> int:
        scaled_size = size * scale
        scaled_size = math.ceil(scaled_size / patch_size) * patch_size  # make divisible by patch_size
        scaled_size = max(patch_size, scaled_size)  # ensure at least 1 patch
        return int(scaled_size)

    # Binary search for optimal scale
    scale_min, scale_max = eps / 10, 100.0
    while (scale_max - scale_min) >= eps:
        scale = (scale_min + scale_max) / 2
        target_height = get_scaled_image_size(scale, image_height, patch_size)
        target_width = get_scaled_image_size(scale, image_width, patch_size)
        num_patches = (target_height / patch_size) * (target_width / patch_size)

        if num_patches <= max_num_patches:
            scale_min = scale
        else:
            scale_max = scale

    scale = scale_min
    target_height = get_scaled_image_size(scale, image_height, patch_size)
    target_width = get_scaled_image_size(scale, image_width, patch_size)
    return target_height, target_width


def convert_image_to_patches(image: np.ndarray, patch_size: int) -> np.ndarray:
    """
    Convert 3D array image of shape (image_height, image_width, num_channels) into 2D array of patches of shape
    (num_patches_height * num_patches_width, patch_size * patch_size * num_channels).
    """
    image_height, image_width, num_channels = image.shape
    num_patches_height = image_height // patch_size
    num_patches_width = image_width // patch_size
    patched_image = image.reshape(num_patches_height, patch_size, num_patches_width, patch_size, num_channels)
    patched_image = patched_image.transpose(0, 2, 1, 3, 4)
    patched_image = patched_image.reshape(num_patches_height * num_patches_width, -1)
    return patched_image


def pad_along_first_dim(array: np.ndarray, target_length: int, pad_value: int = 0) -> Tuple[np.ndarray, np.ndarray]:
    """
    Pad the array along the first dimension.
    """
    current_length = array.shape[0]
    padding_length = target_length - current_length
    mask = np.ones((target_length,), dtype=np.int32)
    if padding_length > 0:
        paddings = [(0, padding_length)] + [(0, 0)] * (array.ndim - 1)
        array = np.pad(array, paddings, mode="constant", constant_values=pad_value)
        mask[-padding_length:] = 0
    return array, mask


class Siglip2ImageProcessor(BaseImageProcessor):
    r"""
    Constructs a SigLIP2 image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's dimensions to fit `max_num_patches` according to given `patch_size`.
            Can be overridden by `do_resize` in the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
            the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
            method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
            `do_normalize` in the `preprocess` method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch the image will be split to.
        max_num_patches (`int`, *optional*, defaults to 256):
            The image will be resized to have at most this number of patches,
            and then padded in "patch" dimension to match this number exactly.
    """

    model_input_names = ["pixel_values", "pixel_attention_mask", "spatial_shapes"]

    def __init__(
        self,
        do_resize: bool = True,
        resample: PILImageResampling = PILImageResampling.BILINEAR,
        do_rescale: bool = True,
        rescale_factor: float = 1 / 255,
        do_normalize: bool = True,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: Optional[bool] = None,
        patch_size: int = 16,
        max_num_patches: int = 256,
        **kwargs,
    ):
        super().__init__(**kwargs)

        image_mean = image_mean if image_mean is not None else [0.5, 0.5, 0.5]
        image_std = image_std if image_std is not None else [0.5, 0.5, 0.5]

        self.do_resize = do_resize
        self.resample = resample
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_convert_rgb = do_convert_rgb
        self.patch_size = patch_size
        self.max_num_patches = max_num_patches

    @filter_out_non_signature_kwargs()
    def preprocess(
        self,
        images: ImageInput,
        do_resize: Optional[bool] = None,
        resample: Optional[PILImageResampling] = None,
        do_rescale: Optional[bool] = None,
        rescale_factor: Optional[float] = None,
        do_normalize: Optional[bool] = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        do_convert_rgb: Optional[bool] = None,
        patch_size: Optional[int] = None,
        max_num_patches: Optional[int] = None,
    ) -> "Image.Image":
        """
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            patch_size (`int`, *optional*, defaults to `self.patch_size`):
                Patch size for processing, same as the patch size used in the model.
            max_num_patches (`int`, *optional*, defaults to `self.max_num_patches`):
                Maximum number of patches per image, the image will be resized to have at most this number of patches.
        """
        do_resize = do_resize if do_resize is not None else self.do_resize
        resample = resample if resample is not None else self.resample
        do_rescale = do_rescale if do_rescale is not None else self.do_rescale
        rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
        do_normalize = do_normalize if do_normalize is not None else self.do_normalize
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std
        do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
        patch_size = patch_size if patch_size is not None else self.patch_size
        max_num_patches = max_num_patches if max_num_patches is not None else self.max_num_patches

        # Explicitly specify data format to be channels last for image preprocessing.
        # Image processor does not support different output formats, because it returns patches.
        data_format = ChannelDimension.LAST

        images = make_flat_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )
        validate_preprocess_arguments(
            do_rescale=do_rescale,
            rescale_factor=rescale_factor,
            do_normalize=do_normalize,
            image_mean=image_mean,
            image_std=image_std,
        )
        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        # All transformations expect numpy arrays.
        images = [to_numpy_array(image) for image in images]

        if do_rescale and is_scaled_image(images[0]):
            logger.warning_once(
                "It looks like you are trying to rescale already rescaled images. If the input"
                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
            )

        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        pixel_masks = []
        pixel_values = []
        spatial_shapes = []

        for image in images:
            image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)

            if do_resize:
                height, width = get_image_size_for_max_num_patches(
                    image_height=image.shape[0],
                    image_width=image.shape[1],
                    patch_size=patch_size,
                    max_num_patches=max_num_patches,
                )
                image = resize(image=image, size=(height, width), resample=resample, input_data_format=data_format)

            if do_rescale:
                image = self.rescale(image=image, scale=rescale_factor, input_data_format=data_format)

            if do_normalize:
                image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=data_format)

            patches = convert_image_to_patches(image, patch_size)
            patches, mask = pad_along_first_dim(patches, max_num_patches)
            num_patches_height = image.shape[0] // patch_size
            num_patches_width = image.shape[1] // patch_size

            spatial_shapes.append((num_patches_height, num_patches_width))
            pixel_values.append(patches)
            pixel_masks.append(mask)

        batch_feature = BatchFeature(
            data={
                "pixel_values": pixel_values,
                "pixel_attention_mask": pixel_masks,
                "spatial_shapes": spatial_shapes,
            },
            tensor_type=return_tensors,
        )

        return batch_feature


__all__ = ["Siglip2ImageProcessor"]
