# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""PyTorch Phi-3 model."""

from typing import Callable, Optional, Tuple

import torch
import torch.utils.checkpoint
from torch import nn

from ...activations import ACT2FN
from ...cache_utils import Cache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import logging
from ..mistral.modeling_mistral import (
    MistralDecoderLayer,
    MistralForCausalLM,
    MistralForSequenceClassification,
    MistralForTokenClassification,
    MistralPreTrainedModel,
    eager_attention_forward,
    rotate_half,
)
from .configuration_phi3 import Phi3Config


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
_CONFIG_FOR_DOC = "Phi3Config"


class Phi3MLP(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.config = config
        self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
        self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
        self.activation_fn = ACT2FN[config.hidden_act]

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        up_states = self.gate_up_proj(hidden_states)

        gate, up_states = up_states.chunk(2, dim=-1)
        up_states = up_states * self.activation_fn(gate)

        return self.down_proj(up_states)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)

    rotary_dim = cos.shape[-1]
    q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
    k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]

    q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1)
    k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1)
    return q_embed, k_embed


class Phi3Attention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.is_causal = True

        op_size = config.num_attention_heads * self.head_dim + 2 * (config.num_key_value_heads * self.head_dim)
        self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
        self.qkv_proj = nn.Linear(config.hidden_size, op_size, bias=False)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        qkv = self.qkv_proj(hidden_states)
        query_pos = self.config.num_attention_heads * self.head_dim
        query_states = qkv[..., :query_pos]
        key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
        value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]

        query_states = query_states.view(hidden_shape).transpose(1, 2)
        key_states = key_states.view(hidden_shape).transpose(1, 2)
        value_states = value_states.view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
                logger.warning_once(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )
            else:
                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            sliding_window=getattr(self.config, "sliding_window", None),
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights


class Phi3DecoderLayer(MistralDecoderLayer):
    def __init__(self, config: Phi3Config, layer_idx: int):
        super().__init__(config, layer_idx)
        self.config = config
        self.self_attn = Phi3Attention(config=config, layer_idx=layer_idx)
        self.mlp = Phi3MLP(config)
        self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
        self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`):
                input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
                Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
                `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
            past_key_value (`Cache`, *optional*): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence
            kwargs (`dict`, *optional*):
                Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
                into the model
        """
        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        hidden_states = residual + self.resid_attn_dropout(hidden_states)  # main diff with Llama

        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + self.resid_mlp_dropout(hidden_states)  # main diff with Llama

        outputs = (hidden_states,)
        if output_attentions:
            outputs += (self_attn_weights,)

        return outputs


class Phi3PreTrainedModel(MistralPreTrainedModel):
    _version = "0.0.5"


class Phi3ForCausalLM(MistralForCausalLM, Phi3PreTrainedModel):
    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        logits_to_keep=None,
        **kwargs,
    ):
        # Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
        # process

        # When the first time input length reached long and short factor switching point, enforce re-compute cache
        # It will cause downside of slower at this single token position, however, better than current failure.
        if (
            past_key_values
            and self.config.rope_scaling
            and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
        ):
            past_length = cache_position[0]
            if past_length <= self.config.original_max_position_embeddings:
                past_key_values = None

        model_inputs = Phi3PreTrainedModel().prepare_inputs_for_generation(
            input_ids=input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            cache_position=cache_position,
            position_ids=position_ids,
            use_cache=use_cache,
            logits_to_keep=logits_to_keep,
            **kwargs,
        )
        return model_inputs


class Phi3ForSequenceClassification(MistralForSequenceClassification):
    pass


class Phi3ForTokenClassification(MistralForTokenClassification):
    pass


__all__ = [
    "Phi3PreTrainedModel",
    "Phi3Model",  # noqa: F822
    "Phi3ForCausalLM",
    "Phi3ForSequenceClassification",
    "Phi3ForTokenClassification",
]
