# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Protein data type."""

import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple

import numpy as np

from . import residue_constants


FeatureDict = Mapping[str, np.ndarray]
ModelOutput = Mapping[str, Any]  # Is a nested dict.
PICO_TO_ANGSTROM = 0.01


@dataclasses.dataclass(frozen=True)
class Protein:
    """Protein structure representation."""

    # Cartesian coordinates of atoms in angstroms. The atom types correspond to
    # residue_constants.atom_types, i.e. the first three are N, CA, CB.
    atom_positions: np.ndarray  # [num_res, num_atom_type, 3]

    # Amino-acid type for each residue represented as an integer between 0 and
    # 20, where 20 is 'X'.
    aatype: np.ndarray  # [num_res]

    # Binary float mask to indicate presence of a particular atom. 1.0 if an atom
    # is present and 0.0 if not. This should be used for loss masking.
    atom_mask: np.ndarray  # [num_res, num_atom_type]

    # Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
    residue_index: np.ndarray  # [num_res]

    # B-factors, or temperature factors, of each residue (in sq. angstroms units),
    # representing the displacement of the residue from its ground truth mean
    # value.
    b_factors: np.ndarray  # [num_res, num_atom_type]

    # Chain indices for multi-chain predictions
    chain_index: Optional[np.ndarray] = None

    # Optional remark about the protein. Included as a comment in output PDB
    # files
    remark: Optional[str] = None

    # Templates used to generate this protein (prediction-only)
    parents: Optional[Sequence[str]] = None

    # Chain corresponding to each parent
    parents_chain_index: Optional[Sequence[int]] = None


def from_proteinnet_string(proteinnet_str: str) -> Protein:
    tag_re = r"(\[[A-Z]+\]\n)"
    tags: List[str] = [tag.strip() for tag in re.split(tag_re, proteinnet_str) if len(tag) > 0]
    groups: Iterator[Tuple[str, List[str]]] = zip(tags[0::2], [l.split("\n") for l in tags[1::2]])

    atoms: List[str] = ["N", "CA", "C"]
    aatype = None
    atom_positions = None
    atom_mask = None
    for g in groups:
        if "[PRIMARY]" == g[0]:
            seq = g[1][0].strip()
            for i in range(len(seq)):
                if seq[i] not in residue_constants.restypes:
                    seq[i] = "X"  # FIXME: strings are immutable
            aatype = np.array(
                [residue_constants.restype_order.get(res_symbol, residue_constants.restype_num) for res_symbol in seq]
            )
        elif "[TERTIARY]" == g[0]:
            tertiary: List[List[float]] = []
            for axis in range(3):
                tertiary.append(list(map(float, g[1][axis].split())))
            tertiary_np = np.array(tertiary)
            atom_positions = np.zeros((len(tertiary[0]) // 3, residue_constants.atom_type_num, 3)).astype(np.float32)
            for i, atom in enumerate(atoms):
                atom_positions[:, residue_constants.atom_order[atom], :] = np.transpose(tertiary_np[:, i::3])
            atom_positions *= PICO_TO_ANGSTROM
        elif "[MASK]" == g[0]:
            mask = np.array(list(map({"-": 0, "+": 1}.get, g[1][0].strip())))
            atom_mask = np.zeros(
                (
                    len(mask),
                    residue_constants.atom_type_num,
                )
            ).astype(np.float32)
            for i, atom in enumerate(atoms):
                atom_mask[:, residue_constants.atom_order[atom]] = 1
            atom_mask *= mask[..., None]

    assert aatype is not None

    return Protein(
        atom_positions=atom_positions,
        atom_mask=atom_mask,
        aatype=aatype,
        residue_index=np.arange(len(aatype)),
        b_factors=None,
    )


def get_pdb_headers(prot: Protein, chain_id: int = 0) -> List[str]:
    pdb_headers: List[str] = []

    remark = prot.remark
    if remark is not None:
        pdb_headers.append(f"REMARK {remark}")

    parents = prot.parents
    parents_chain_index = prot.parents_chain_index
    if parents is not None and parents_chain_index is not None:
        parents = [p for i, p in zip(parents_chain_index, parents) if i == chain_id]

    if parents is None or len(parents) == 0:
        parents = ["N/A"]

    pdb_headers.append(f"PARENT {' '.join(parents)}")

    return pdb_headers


def add_pdb_headers(prot: Protein, pdb_str: str) -> str:
    """Add pdb headers to an existing PDB string. Useful during multi-chain
    recycling
    """
    out_pdb_lines: List[str] = []
    lines = pdb_str.split("\n")

    remark = prot.remark
    if remark is not None:
        out_pdb_lines.append(f"REMARK {remark}")

    parents_per_chain: List[List[str]]
    if prot.parents is not None and len(prot.parents) > 0:
        parents_per_chain = []
        if prot.parents_chain_index is not None:
            parent_dict: Dict[str, List[str]] = {}
            for p, i in zip(prot.parents, prot.parents_chain_index):
                parent_dict.setdefault(str(i), [])
                parent_dict[str(i)].append(p)

            max_idx = max([int(chain_idx) for chain_idx in parent_dict])
            for i in range(max_idx + 1):
                chain_parents = parent_dict.get(str(i), ["N/A"])
                parents_per_chain.append(chain_parents)
        else:
            parents_per_chain.append(list(prot.parents))
    else:
        parents_per_chain = [["N/A"]]

    def make_parent_line(p: Sequence[str]) -> str:
        return f"PARENT {' '.join(p)}"

    out_pdb_lines.append(make_parent_line(parents_per_chain[0]))

    chain_counter = 0
    for i, l in enumerate(lines):
        if "PARENT" not in l and "REMARK" not in l:
            out_pdb_lines.append(l)
        if "TER" in l and "END" not in lines[i + 1]:
            chain_counter += 1
            if not chain_counter >= len(parents_per_chain):
                chain_parents = parents_per_chain[chain_counter]
            else:
                chain_parents = ["N/A"]

            out_pdb_lines.append(make_parent_line(chain_parents))

    return "\n".join(out_pdb_lines)


def to_pdb(prot: Protein) -> str:
    """Converts a `Protein` instance to a PDB string.

    Args:
      prot: The protein to convert to PDB.

    Returns:
      PDB string.
    """
    restypes = residue_constants.restypes + ["X"]

    def res_1to3(r: int) -> str:
        return residue_constants.restype_1to3.get(restypes[r], "UNK")

    atom_types = residue_constants.atom_types

    pdb_lines: List[str] = []

    atom_mask = prot.atom_mask
    aatype = prot.aatype
    atom_positions = prot.atom_positions
    residue_index = prot.residue_index.astype(np.int32)
    b_factors = prot.b_factors
    chain_index = prot.chain_index

    if np.any(aatype > residue_constants.restype_num):
        raise ValueError("Invalid aatypes.")

    headers = get_pdb_headers(prot)
    if len(headers) > 0:
        pdb_lines.extend(headers)

    n = aatype.shape[0]
    atom_index = 1
    prev_chain_index = 0
    chain_tags = string.ascii_uppercase
    chain_tag = None
    # Add all atom sites.
    for i in range(n):
        res_name_3 = res_1to3(aatype[i])
        for atom_name, pos, mask, b_factor in zip(atom_types, atom_positions[i], atom_mask[i], b_factors[i]):
            if mask < 0.5:
                continue

            record_type = "ATOM"
            name = atom_name if len(atom_name) == 4 else f" {atom_name}"
            alt_loc = ""
            insertion_code = ""
            occupancy = 1.00
            element = atom_name[0]  # Protein supports only C, N, O, S, this works.
            charge = ""

            chain_tag = "A"
            if chain_index is not None:
                chain_tag = chain_tags[chain_index[i]]

            # PDB is a columnar format, every space matters here!
            atom_line = (
                f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
                f"{res_name_3:>3} {chain_tag:>1}"
                f"{residue_index[i]:>4}{insertion_code:>1}   "
                f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
                f"{occupancy:>6.2f}{b_factor:>6.2f}          "
                f"{element:>2}{charge:>2}"
            )
            pdb_lines.append(atom_line)
            atom_index += 1

        should_terminate = i == n - 1
        if chain_index is not None:
            if i != n - 1 and chain_index[i + 1] != prev_chain_index:
                should_terminate = True
                prev_chain_index = chain_index[i + 1]

        if should_terminate:
            # Close the chain.
            chain_end = "TER"
            chain_termination_line = (
                f"{chain_end:<6}{atom_index:>5}      {res_1to3(aatype[i]):>3} {chain_tag:>1}{residue_index[i]:>4}"
            )
            pdb_lines.append(chain_termination_line)
            atom_index += 1

            if i != n - 1:
                # "prev" is a misnomer here. This happens at the beginning of
                # each new chain.
                pdb_lines.extend(get_pdb_headers(prot, prev_chain_index))

    pdb_lines.append("END")
    pdb_lines.append("")
    return "\n".join(pdb_lines)


def ideal_atom_mask(prot: Protein) -> np.ndarray:
    """Computes an ideal atom mask.

    `Protein.atom_mask` typically is defined according to the atoms that are reported in the PDB. This function
    computes a mask according to heavy atoms that should be present in the given sequence of amino acids.

    Args:
      prot: `Protein` whose fields are `numpy.ndarray` objects.

    Returns:
      An ideal atom mask.
    """
    return residue_constants.STANDARD_ATOM_MASK[prot.aatype]


def from_prediction(
    features: FeatureDict,
    result: ModelOutput,
    b_factors: Optional[np.ndarray] = None,
    chain_index: Optional[np.ndarray] = None,
    remark: Optional[str] = None,
    parents: Optional[Sequence[str]] = None,
    parents_chain_index: Optional[Sequence[int]] = None,
) -> Protein:
    """Assembles a protein from a prediction.

    Args:
      features: Dictionary holding model inputs.
      result: Dictionary holding model outputs.
      b_factors: (Optional) B-factors to use for the protein.
      chain_index: (Optional) Chain indices for multi-chain predictions
      remark: (Optional) Remark about the prediction
      parents: (Optional) List of template names
    Returns:
      A protein instance.
    """
    return Protein(
        aatype=features["aatype"],
        atom_positions=result["final_atom_positions"],
        atom_mask=result["final_atom_mask"],
        residue_index=features["residue_index"] + 1,
        b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"]),
        chain_index=chain_index,
        remark=remark,
        parents=parents,
        parents_chain_index=parents_chain_index,
    )
