# coding=utf-8
# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch CodeGen model."""

from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_torch_flex_attn_available,
    logging,
)
from .configuration_codegen import CodeGenConfig


if is_torch_flex_attn_available():
    from torch.nn.attention.flex_attention import BlockMask

    from ...integrations.flex_attention import make_flex_block_causal_mask


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "Salesforce/codegen-2B-mono"
_CONFIG_FOR_DOC = "CodeGenConfig"


# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim))
    sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq).float()
    return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)


# Copied from transformers.models.gptj.modeling_gptj.rotate_every_two
def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
    x1 = x[:, :, :, ::2]
    x2 = x[:, :, :, 1::2]
    x = torch.stack((-x2, x1), dim=-1)
    return x.flatten(-2)  # in einsum notation: rearrange(x, '... d j -> ... (d j)')


# Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
    sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
    cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
    return (tensor * cos) + (rotate_every_two(tensor) * sin)


class CodeGenAttention(nn.Module):
    def __init__(self, config, layer_idx=None):
        super().__init__()

        max_positions = config.max_position_embeddings
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.embed_dim = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_attention_heads
        if self.head_dim * self.num_attention_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
                f" `num_attention_heads`: {self.num_attention_heads})."
            )
        self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
        self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)

        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.rotary_dim = config.rotary_dim
        pos_embd_dim = self.rotary_dim or self.embed_dim
        self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)

    def _split_heads(self, x, n_head, dim_head, mp_num):
        reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
        reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
        return reshaped

    def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
        """
        Merges attn_head_size dim and num_attn_heads dim into n_ctx
        """
        if len(tensor.shape) == 5:
            tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
        elif len(tensor.shape) == 4:
            tensor = tensor.permute(0, 2, 1, 3).contiguous()
        else:
            raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
        new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
        return tensor.view(new_shape)

    def _attn(
        self,
        query,
        key,
        value,
        attention_mask=None,
        head_mask=None,
    ):
        # Keep the attention weights computation in fp32 to avoid overflow issues
        query = query.to(torch.float32)
        key = key.to(torch.float32)

        attn_weights = torch.matmul(query, key.transpose(-1, -2))

        if attention_mask is not None:
            causal_mask = attention_mask[:, :, :, : key.shape[-2]]
            attn_weights += causal_mask

        attn_weights = attn_weights / self.scale_attn
        attn_weights = nn.Softmax(dim=-1)(attn_weights)
        attn_weights = attn_weights.to(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    def forward(
        self,
        hidden_states: Optional[torch.FloatTensor],
        layer_past: Optional[Cache] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[
        Tuple[torch.Tensor, Tuple[torch.Tensor]],
        Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
    ]:
        qkv = self.qkv_proj(hidden_states)
        # TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic
        mp_num = 4
        qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))

        local_dim = self.head_dim * self.num_attention_heads // mp_num
        query, value, key = torch.split(qkv_split, local_dim, dim=-1)
        query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
        key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)

        value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
        value = value.permute(0, 2, 1, 3)

        embed_positions = self.embed_positions
        if embed_positions.device != position_ids.device:
            embed_positions = embed_positions.to(position_ids.device)
            self.embed_positions = embed_positions

        sincos = embed_positions[position_ids]
        sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)

        if self.rotary_dim is not None:
            k_rot = key[:, :, :, : self.rotary_dim]
            k_pass = key[:, :, :, self.rotary_dim :]

            q_rot = query[:, :, :, : self.rotary_dim]
            q_pass = query[:, :, :, self.rotary_dim :]

            k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
            q_rot = apply_rotary_pos_emb(q_rot, sin, cos)

            key = torch.cat([k_rot, k_pass], dim=-1)
            query = torch.cat([q_rot, q_pass], dim=-1)
        else:
            key = apply_rotary_pos_emb(key, sin, cos)
            query = apply_rotary_pos_emb(query, sin, cos)

        key = key.permute(0, 2, 1, 3)
        query = query.permute(0, 2, 1, 3)

        # Note that this cast is quite ugly, but is not implemented before ROPE as k_rot in the original codebase is always in fp32.
        # Reference: https://github.com/salesforce/CodeGen/blob/f210c3bb1216c975ad858cd4132c0fdeabf4bfc2/codegen1/jaxformer/hf/codegen/modeling_codegen.py#L38
        if layer_past is not None:
            cache_kwargs = {
                "sin": sin,
                "cos": cos,
                "partial_rotation_size": self.rotary_dim,
                "cache_position": cache_position,
            }
            key, value = layer_past.update(key.to(hidden_states.dtype), value, self.layer_idx, cache_kwargs)

        # compute self-attention: V x Softmax(QK^T)
        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
        attn_output = self.out_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, layer_past)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)


# Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->CodeGen
class CodeGenMLP(nn.Module):
    def __init__(self, intermediate_size, config):  # in MLP: intermediate_size= 4 * embed_dim
        super().__init__()
        embed_dim = config.n_embd

        self.fc_in = nn.Linear(embed_dim, intermediate_size)
        self.fc_out = nn.Linear(intermediate_size, embed_dim)

        self.act = ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)

    def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
        hidden_states = self.fc_in(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.fc_out(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


# Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->CodeGen
class CodeGenBlock(nn.Module):
    # Ignore copy
    def __init__(self, config, layer_idx=None):
        super().__init__()
        inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
        self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.attn = CodeGenAttention(config, layer_idx)
        self.mlp = CodeGenMLP(inner_dim, config)

    def forward(
        self,
        hidden_states: Optional[torch.FloatTensor],
        layer_past: Optional[Cache] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_outputs = self.attn(
            hidden_states=hidden_states,
            layer_past=layer_past,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            cache_position=cache_position,
        )
        attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attn_outputs[1:]

        feed_forward_hidden_states = self.mlp(hidden_states)
        hidden_states = attn_output + feed_forward_hidden_states + residual

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions)


class CodeGenPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = CodeGenConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["CodeGenBlock"]
    _skip_keys_device_placement = "past_key_values"
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear,)):
            # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


CODEGEN_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`CodeGenConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

CODEGEN_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.

            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
            model's internal embedding lookup matrix.
        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.

            Two formats are allowed:
            - a [`~cache_utils.Cache`] instance, see our
            [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
            cache format.

            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
            legacy cache format will be returned.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
            of shape `(batch_size, sequence_length)`.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""


@add_start_docstrings(
    "The bare CodeGen Model transformer outputting raw hidden-states without any specific head on top.",
    CODEGEN_START_DOCSTRING,
)
class CodeGenModel(CodeGenPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.embed_dim = config.n_embd
        self.vocab_size = config.vocab_size
        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([CodeGenBlock(config, layer_idx=i) for i in range(config.n_layer)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
        self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    @add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor]]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,  # NOOP kwargs, for now
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)

        # kept for BC (non `Cache` `past_key_values` inputs)
        return_legacy_cache = False
        if use_cache and not isinstance(past_key_values, Cache):
            return_legacy_cache = True
            if past_key_values is None:
                past_key_values = DynamicCache()
            else:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
                logger.warning_once(
                    "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
                    "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
                    "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
                )

        seq_length = inputs_embeds.shape[1]
        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x num_attention_heads x N x N
        # head_mask has shape n_layer x batch x num_attention_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)
        hidden_states = inputs_embeds

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, seq_length)
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)
        output_shape = (-1, seq_length, hidden_states.size(-1))

        next_decoder_cache = None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        for i, block in enumerate(self.h):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                outputs = self._gradient_checkpointing_func(
                    block.__call__,
                    hidden_states,
                    None,
                    causal_mask,
                    position_ids,
                    head_mask[i],
                    use_cache,
                    output_attentions,
                    cache_position,
                )
            else:
                outputs = block(
                    hidden_states=hidden_states,
                    layer_past=past_key_values,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    head_mask=head_mask[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    cache_position=cache_position,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                next_decoder_cache = outputs[1]

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if return_legacy_cache:
            next_cache = next_cache.to_legacy_cache()

        if not return_dict:
            return tuple(
                v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions] if v is not None
            )

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )

    # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool = False,
    ):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and (attention_mask == 0.0).any():
                return attention_mask
            return None
        if self.config._attn_implementation == "flex_attention":
            if isinstance(attention_mask, torch.Tensor):
                attention_mask = make_flex_block_causal_mask(attention_mask)
            if isinstance(attention_mask, BlockMask):
                return attention_mask

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        using_static_cache = isinstance(past_key_values, StaticCache)

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype, device = input_tensor.dtype, input_tensor.device
        sequence_length = input_tensor.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            device=device,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type in ["cuda", "xpu"]
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            min_dtype = torch.finfo(dtype).min
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask

    @staticmethod
    # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
    def _prepare_4d_causal_attention_mask_with_cache_position(
        attention_mask: torch.Tensor,
        sequence_length: int,
        target_length: int,
        dtype: torch.dtype,
        device: torch.device,
        cache_position: torch.Tensor,
        batch_size: int,
        **kwargs,
    ):
        """
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
                `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache,
                to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            device (`torch.device`):
                The device to place the 4D attention mask on.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
        """
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
                    causal_mask.device
                )
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask, min_dtype
                )

        return causal_mask


@add_start_docstrings(
    """
    The CodeGen Model transformer with a language modeling head on top.
    """,
    CODEGEN_START_DOCSTRING,
)
class CodeGenForCausalLM(CodeGenPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.transformer = CodeGenModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    @add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor]]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )
        hidden_states = transformer_outputs[0]

        # make sure sampling in fp16 works correctly and
        # compute loss in fp32 to match with mesh-tf version
        # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
        lm_logits = self.lm_head(hidden_states).to(torch.float32)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(lm_logits.device)
            # Flatten the tokens
            loss = self.loss_function(
                lm_logits,
                labels,
                vocab_size=self.config.vocab_size,
                **kwargs,
            )

            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    @staticmethod
    def _reorder_cache(
        past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
        [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
            for layer_past in past_key_values
        )


__all__ = ["CodeGenForCausalLM", "CodeGenModel", "CodeGenPreTrainedModel"]
