# coding=utf-8
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BLOOM model."""

import math
import warnings
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
from torch.nn import functional as F

from ...cache_utils import Cache, DynamicCache, StaticCache
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
    is_torch_flex_attn_available,
    logging,
)
from .configuration_bloom import BloomConfig


if is_torch_flex_attn_available():
    from torch.nn.attention.flex_attention import BlockMask

    from ...integrations.flex_attention import make_flex_block_causal_mask


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "bigscience/bloom-560m"
_CONFIG_FOR_DOC = "BloomConfig"


def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
    """
    Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
    relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
    `softmax(l+a) = softmax(l)`. Based on
    https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
    TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.

    Args:
    Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
        attention_mask (`torch.Tensor`):
            Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
        num_heads (`int`):
            number of heads
        dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
            dtype of the output tensor
    """
    batch_size, seq_length = attention_mask.shape
    closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
    base = torch.tensor(
        2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
    )
    powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
    slopes = torch.pow(base, powers)

    if closest_power_of_2 != num_heads:
        extra_base = torch.tensor(
            2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
        )
        num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
        extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
        slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)

    # Note: alibi will added to the attention bias that will be applied to the query, key product of attention
    # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
    # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
    # => the query_length dimension will then be broadcasted correctly
    # This is more or less identical to T5's relative position bias:
    # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
    arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
    alibi = slopes[..., None] * arange_tensor
    return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)


def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
    """
    Dropout add function

    Args:
        x (`torch.tensor`):
            input tensor
        residual (`torch.tensor`):
            residual tensor
        prob (`float`):
            dropout probability
        training (`bool`):
            training mode
    """
    out = F.dropout(x, p=prob, training=training)
    out = residual + out
    return out


def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor:
    """
    Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
    make the model jitable.

    Args:
        x (`torch.tensor`):
            input hidden states
    """
    return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))


def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
    """
    gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
    0.3989423 * x * torch.exp(-0.5 * x * x)

    Args:
        g (`torch.tensor`):
            gradient output tensor
        x (`torch.tensor`):
            input tensor
    """
    x = x[0]  # x is a tuple of 1 element, needs to unpack it first
    tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
    # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
    ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
    return ff * g


class GeLUFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input: torch.Tensor) -> torch.Tensor:
        ctx.save_for_backward(input)
        return bloom_gelu_forward(input)

    @staticmethod
    def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
        input = ctx.saved_tensors
        tmp = bloom_gelu_back(grad_output, input)
        return tmp


class BloomGelu(nn.Module):
    """
    BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model
    torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
    copied from Megatron-DeepSpeed code and adapted for our needs

    See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
    """

    def __init__(self):
        super().__init__()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.training:
            return GeLUFunction.apply(x)
        else:
            return bloom_gelu_forward(x)


class BloomAttention(nn.Module):
    def __init__(self, config: BloomConfig, layer_idx: Optional[int] = None):
        super().__init__()

        self.pretraining_tp = config.pretraining_tp
        self.slow_but_exact = config.slow_but_exact

        self.hidden_size = config.hidden_size
        self.num_heads = config.n_head
        self.head_dim = self.hidden_size // self.num_heads
        self.split_size = self.hidden_size
        self.hidden_dropout = config.hidden_dropout

        if self.head_dim * self.num_heads != self.hidden_size:
            raise ValueError(
                f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
                f" {self.num_heads})."
            )

        # Layer-wise attention scaling
        self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
        self.beta = 1.0
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
        self.dense = nn.Linear(self.hidden_size, self.hidden_size)
        self.attention_dropout = nn.Dropout(config.attention_dropout)

    def _reshape(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Split the last dimension into (num_heads, head_dim) and reshapes to (bs, heads, len, dim) shape
        without making any copies, results share same memory storage as `fused_qkv`

        Args:
            fused_qkv (`torch.tensor`): [batch_size, seq_length, num_heads * 3 * head_dim]

        Returns:
            query: [batch_size, num_heads, seq_length, head_dim]
            key: [batch_size, num_heads, seq_length, head_dim]
            value: [batch_size, num_heads, seq_length, head_dim]
        """
        batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
        fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
        query_layer = fused_qkv[..., 0, :].transpose(1, 2)
        key_layer = fused_qkv[..., 1, :].transpose(1, 2)
        value_layer = fused_qkv[..., 2, :].transpose(1, 2)
        return query_layer, key_layer, value_layer

    def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
        """
        Merge heads together over the last dimension

        Args:
            x (`torch.tensor`): [batch_size * num_heads, seq_length, head_dim]

        Returns:
            torch.tensor: [batch_size, seq_length, num_heads * head_dim]
        """
        # What we want to achieve is:
        # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
        batch_size_and_num_heads, seq_length, _ = x.shape
        batch_size = batch_size_and_num_heads // self.num_heads

        # First view to decompose the batch size
        # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
        x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)

        # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
        x = x.permute(0, 2, 1, 3)

        # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
        return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        residual: torch.Tensor,
        alibi: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_past: Optional[Cache] = None,
        head_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ):
        batch_size, q_length, _ = hidden_states.shape
        fused_qkv = self.query_key_value(hidden_states)  # [batch_size, seq_length, 3 x hidden_size]
        # 3 x [batch_size, num_heads, seq_length, head_dim]
        query_layer, key_layer, value_layer = self._reshape(fused_qkv)

        if layer_past is not None:
            cache_kwargs = {"cache_position": cache_position}
            key_layer, value_layer = layer_past.update(key_layer, value_layer, self.layer_idx, cache_kwargs)

        # reshape qkv for further computations
        query_layer = query_layer.reshape(batch_size * self.num_heads, -1, self.head_dim)
        key_layer = key_layer.reshape(batch_size * self.num_heads, -1, self.head_dim).transpose(-1, -2)
        value_layer = value_layer.reshape(batch_size * self.num_heads, -1, self.head_dim)

        # [batch_size * num_heads, q_length, kv_length]
        attention_scores = alibi.baddbmm(
            batch1=query_layer,
            batch2=key_layer,
            beta=self.beta,
            alpha=self.inv_norm_factor,
        )

        # change view to [batch_size, num_heads, q_length, kv_length]
        attn_weights = attention_scores.view(batch_size, self.num_heads, q_length, -1)
        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_layer.shape[-1]]
            attn_weights = attn_weights + causal_mask

        # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype
        attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_layer.dtype)

        # [batch_size, num_heads, q_length, kv_length]
        attention_probs = self.attention_dropout(attention_probs)

        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        # change view [batch_size x num_heads, q_length, kv_length]
        attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, -1)

        # matmul: [batch_size * num_heads, q_length, head_dim]
        context_layer = torch.bmm(attention_probs_reshaped, value_layer)

        # change view [batch_size, q_length, num_heads * head_dim]
        context_layer = self._merge_heads(context_layer)

        # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
        if self.pretraining_tp > 1 and self.slow_but_exact:
            slices = self.hidden_size / self.pretraining_tp
            output_tensor = torch.zeros_like(context_layer)
            for i in range(self.pretraining_tp):
                output_tensor = output_tensor + F.linear(
                    context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
                    self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
                )
        else:
            output_tensor = self.dense(context_layer)

        output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)

        outputs = (output_tensor, layer_past)
        if output_attentions:
            outputs += (attention_probs,)

        return outputs


class BloomMLP(nn.Module):
    def __init__(self, config: BloomConfig):
        super().__init__()
        hidden_size = config.hidden_size

        self.pretraining_tp = config.pretraining_tp
        self.slow_but_exact = config.slow_but_exact
        self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size)
        self.gelu_impl = BloomGelu()
        self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size)
        self.hidden_dropout = config.hidden_dropout

    def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
        hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))

        if self.pretraining_tp > 1 and self.slow_but_exact:
            intermediate_output = torch.zeros_like(residual)
            slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp
            for i in range(self.pretraining_tp):
                intermediate_output = intermediate_output + F.linear(
                    hidden_states[:, :, int(i * slices) : int((i + 1) * slices)],
                    self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)],
                )
        else:
            intermediate_output = self.dense_4h_to_h(hidden_states)

        output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)

        return output


class BloomBlock(nn.Module):
    def __init__(self, config: BloomConfig, layer_idx: Optional[int] = None):
        super().__init__()
        hidden_size = config.hidden_size

        self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.num_heads = config.n_head
        self.self_attention = BloomAttention(config, layer_idx)
        self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

        self.mlp = BloomMLP(config)

        self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
        self.hidden_dropout = config.hidden_dropout

    def forward(
        self,
        hidden_states: torch.Tensor,
        alibi: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_past: Optional[Cache] = None,
        head_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ):
        # hidden_states: [batch_size, seq_length, hidden_size]

        # Layer norm at the beginning of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)

        # Layer norm post the self attention.
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = hidden_states

        # Self attention.
        attn_outputs = self.self_attention(
            layernorm_output,
            residual,
            layer_past=layer_past,
            attention_mask=attention_mask,
            alibi=alibi,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            cache_position=cache_position,
        )

        attention_output = attn_outputs[0]

        outputs = attn_outputs[1:]

        layernorm_output = self.post_attention_layernorm(attention_output)

        # Get residual
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = attention_output

        # MLP.
        output = self.mlp(layernorm_output, residual)

        if use_cache:
            outputs = (output,) + outputs
        else:
            outputs = (output,) + outputs[1:]

        return outputs  # hidden_states, past_kv, attentions


class BloomPreTrainedModel(PreTrainedModel):
    config_class = BloomConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["BloomBlock"]
    _skip_keys_device_placement = "past_key_values"
    _supports_cache_class = True
    _supports_static_cache = True
    _supports_quantized_cache = True

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module: nn.Module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


BLOOM_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`BloomConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

BLOOM_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
            `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
            (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.

            If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
            `input_ids`.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.

            Two formats are allowed:
            - a [`~cache_utils.Cache`] instance, see our
            [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
            cache format.

            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
            legacy cache format will be returned.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
            of shape `(batch_size, sequence_length)`.
        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.

            If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
            `past_key_values`).
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""


@add_start_docstrings(
    "The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
    BLOOM_START_DOCSTRING,
)
class BloomModel(BloomPreTrainedModel):
    def __init__(self, config: BloomConfig):
        super().__init__(config)

        self.embed_dim = config.hidden_size
        self.num_heads = config.n_head

        # Embedding + LN Embedding
        self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
        self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        # Transformer blocks
        self.h = nn.ModuleList([BloomBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])

        # Final Layer Norm
        self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
        return build_alibi_tensor(attention_mask, num_heads, dtype)

    def get_input_embeddings(self):
        return self.word_embeddings

    def set_input_embeddings(self, new_embeddings: torch.Tensor):
        self.word_embeddings = new_embeddings

    @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPastAndCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **deprecated_arguments,
    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
        if deprecated_arguments.pop("position_ids", False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
            warnings.warn(
                "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
                " passing `position_ids`.",
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        # kept for BC (non `Cache` `past_key_values` inputs)
        return_legacy_cache = False
        if use_cache and not isinstance(past_key_values, Cache):
            return_legacy_cache = True
            if past_key_values is None:
                past_key_values = DynamicCache()
            else:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
                logger.warning_once(
                    "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
                    "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
                    "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
                )

        batch_size, seq_length, _ = inputs_embeds.shape
        past_length = past_key_values.get_seq_length() if past_key_values is not None else 0
        seq_length_with_past = seq_length + past_length
        if cache_position is None:
            cache_position = torch.arange(past_length, past_length + seq_length, device=inputs_embeds.device)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape batch_size x num_heads x N x N
        # head_mask has shape n_layer x batch x num_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)
        hidden_states = self.word_embeddings_layernorm(inputs_embeds)

        next_decoder_cache = None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        # Compute alibi tensor: check build_alibi_tensor documentation
        if attention_mask is None:
            attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
        else:
            attention_mask = attention_mask.to(hidden_states.device)

        alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
        causal_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )

        for i, block in enumerate(self.h):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                outputs = self._gradient_checkpointing_func(
                    block.__call__,
                    hidden_states,
                    alibi,
                    causal_mask,
                    past_key_values,
                    head_mask[i],
                    use_cache,
                    output_attentions,
                    cache_position,
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=past_key_values,
                    attention_mask=causal_mask,
                    head_mask=head_mask[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    alibi=alibi,
                    cache_position=cache_position,
                )

            hidden_states = outputs[0]
            if use_cache:
                next_decoder_cache = outputs[1]

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)

        # Add last hidden state
        hidden_states = self.ln_f(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if return_legacy_cache:
            next_cache = next_cache.to_legacy_cache()

        if not return_dict:
            return tuple(
                v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions] if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )

    # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool = False,
    ):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and (attention_mask == 0.0).any():
                return attention_mask
            return None
        if self.config._attn_implementation == "flex_attention":
            if isinstance(attention_mask, torch.Tensor):
                attention_mask = make_flex_block_causal_mask(attention_mask)
            if isinstance(attention_mask, BlockMask):
                return attention_mask

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        using_static_cache = isinstance(past_key_values, StaticCache)

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype, device = input_tensor.dtype, input_tensor.device
        sequence_length = input_tensor.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            device=device,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type in ["cuda", "xpu"]
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            min_dtype = torch.finfo(dtype).min
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask

    @staticmethod
    # Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
    def _prepare_4d_causal_attention_mask_with_cache_position(
        attention_mask: torch.Tensor,
        sequence_length: int,
        target_length: int,
        dtype: torch.dtype,
        device: torch.device,
        cache_position: torch.Tensor,
        batch_size: int,
        **kwargs,
    ):
        """
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
                `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache,
                to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            device (`torch.device`):
                The device to place the 4D attention mask on.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
        """
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
                    causal_mask.device
                )
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask, min_dtype
                )

        return causal_mask


@add_start_docstrings(
    """
    The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
    embeddings).
    """,
    BLOOM_START_DOCSTRING,
)
class BloomForCausalLM(BloomPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: BloomConfig):
        super().__init__(config)
        self.transformer = BloomModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings: torch.Tensor):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        use_cache=True,
        **kwargs,
    ):
        # Overwriten because of the fixed-shape attention mask creation

        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
        #              (we can't check exception 3 while compiling)
        # Exception 4: If input_embeds are passed then slice it through `cache_position`, to keep only the unprocessed tokens and
        # generate the first token for each sequence. Later use the generated Input ids for continuation.
        if past_key_values is not None:
            if inputs_embeds is not None and input_ids.shape[1] == 0:  # Exception 4
                inputs_embeds = inputs_embeds[:, -cache_position.shape[0] :]
            elif (
                inputs_embeds is not None  # Exception 1
                or cache_position[-1] >= input_ids.shape[1]  # Exception 3
            ):
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and len(cache_position) == inputs_embeds.shape[1]:
            model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
        else:
            # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s  `mode="reduce-overhead`, as otherwise the
            # input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in
            # the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
            model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}

        # This part differs from other models because BLOOM needs a 2D mask to construct alibi tensor
        # The only difference is the usage of 2D instead of 4D mask, but the shape will be static
        if isinstance(past_key_values, StaticCache) and attention_mask is not None:
            target_length = past_key_values.get_max_cache_shape()
            batch_size, seq_length = attention_mask.shape
            diff = target_length - seq_length

            new_attn_mask = torch.zeros(batch_size, diff, device=attention_mask.device, dtype=attention_mask.dtype)
            attention_mask = torch.cat(
                [attention_mask, new_attn_mask],
                dim=-1,
            )

        model_inputs.update(
            {
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutputWithCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **deprecated_arguments,
    ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        # Bloom has deprecated kwargs, so we need to pop num_items_in_batch explicitly
        num_items_in_batch = deprecated_arguments.pop("num_items_in_batch", None)
        if deprecated_arguments.pop("position_ids", False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
            warnings.warn(
                "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
                " passing `position_ids`.",
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(lm_logits.device)
            # Flatten the tokens
            loss = self.loss_function(
                lm_logits,
                labels,
                vocab_size=self.config.vocab_size,
                num_items_in_batch=num_items_in_batch,
            )

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    def _reorder_cache(
        self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.

        Output shares the same memory storage as `past`.
        """
        # Get a copy of `beam_idx` on all the devices where we need those indices.
        device_to_beam_idx = {
            past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
        }
        reordered_past = tuple(
            (
                layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
                layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
            )
            for layer_past in past
        )
        return reordered_past


@add_start_docstrings(
    """
    The Bloom Model transformer with a sequence classification head on top (linear layer).

    [`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-1) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    BLOOM_START_DOCSTRING,
)
class BloomForSequenceClassification(BloomPreTrainedModel):
    def __init__(self, config: BloomConfig):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = BloomModel(config)
        self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=SequenceClassifierOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **deprecated_arguments,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        if deprecated_arguments.pop("position_ids", False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
            warnings.warn(
                "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
                " passing `position_ids`.",
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            last_non_pad_token = -1
        elif input_ids is not None:
            # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
            non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
            token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
            last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
        else:
            last_non_pad_token = -1
            logger.warning_once(
                f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
            )

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


@add_start_docstrings(
    """
    Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
    Named-Entity-Recognition (NER) tasks.
    """,
    BLOOM_START_DOCSTRING,
)
class BloomForTokenClassification(BloomPreTrainedModel):
    def __init__(self, config: BloomConfig):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.transformer = BloomModel(config)
        if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
            classifier_dropout = config.classifier_dropout
        elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
            classifier_dropout = config.hidden_dropout
        else:
            classifier_dropout = 0.1
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **deprecated_arguments,
    ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        if deprecated_arguments.pop("position_ids", False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
            warnings.warn(
                "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
                " passing `position_ids`.",
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = transformer_outputs[0]
        hidden_states = self.dropout(hidden_states)
        logits = self.classifier(hidden_states)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            batch_size, seq_length = labels.shape
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(
                logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
            )

        if not return_dict:
            output = (logits,) + transformer_outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


@add_start_docstrings(
    """
    The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like
    SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    BLOOM_START_DOCSTRING,
)
class BloomForQuestionAnswering(BloomPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.transformer = BloomModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, 2)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
        r"""
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


__all__ = [
    "BloomForCausalLM",
    "BloomModel",
    "BloomPreTrainedModel",
    "BloomForSequenceClassification",
    "BloomForTokenClassification",
    "BloomForQuestionAnswering",
]
