o
    hm                     @   s   d dl Z d dlmZ d dlmZmZmZ d dlZd dlm	Z	m
Z
 d dlmZmZmZmZmZmZmZmZmZmZ g dZeddZG d	d
 d
ejZ	ddejdedefddZG dd deZG dd deZdS )    N)
namedtuple)AnyCallableOptional))sparse_semi_structured_from_dense_cutlass'sparse_semi_structured_to_dense_cutlass)
fallback_dispatchersemi_sparse_addmmsemi_sparse_detachsemi_sparse_indicessemi_sparse_linearsemi_sparse_mmsemi_sparse_scaled_mmsemi_sparse_tsemi_sparse_valuessemi_sparse_view)SparseSemiStructuredTensor!SparseSemiStructuredTensorCUTLASS$SparseSemiStructuredTensorCUSPARSELTto_sparse_semi_structured_SEMI_STRUCTURED_SPARSE_CONFIGz=sparse_min_rows sparse_min_cols dense_min_rows dense_min_colsc                   @   s"  e Zd ZU dZdZeed< eej	e
f ed< dZeed< dZeed< dZeed< eed	< eeef ed
< eej ed< eej ed< eej ed< eej ed< eej ed< eed< eed< g dZe			d3dejdeej deej deej deej deej dededefddZdefddZdeee eejeeef f fddZedeejeeef dejfddZejjZede fdd Z!ed4d5d"d#Z"ed$ejdd!fd%d&Z#ed'ejdejfd(d)Z$d*d+ Z%ed$ejdd fd,d-Z&d!d.d/ejd0eej dejfd1d2Z'd!S )6r   a  
    This class implementes semi-structured sparsity as a Tensor subclass.

    Semi-structured sparsity describes a sparsity pattern where n in every 2n elements are sparse,
    depending on the datatype. It is also referred to as 2:4 sparsity or fine-grained
    structured sparsity.

    There are two backends available for semi_structred sparsity, either cuSPARSELt or CUTLASS.
    This class is meant to serve as a base class for both implementations. SparseSemiStructuredCUTLASS
    and SparseSemiStructuredCUSPARSELT both inherit from this class and define three backend-specific items.
    Note that as such, this class cannot be insantiated directly.

    -`_DTYPE_SHAPE_CONSTRAINTS` - A dictionary holding backend specific dense/sparse min shape constraints
    - `def from_dense()` - backend specific compression routines
    - `def _mm()` - backend specifc mm op (either torch._cslt_sparse_mm or torch._sparse_semi_structured_(mm|addmm))
    r   _DEFAULT_ALG_ID_DTYPE_SHAPE_CONSTRAINTSF_FORCE_CUTLASS_FUSE_TRANSPOSE_PROTOTYPE_WARNING_SHOWNBACKENDSPARSE_DISPATCHpackedmetapacked_tmeta_tcompressed_swizzled_bitmaskfuse_transpose_cusparseltalg_id_cusparselt)r   r   r    r!   r"   shaperequires_gradc
                 C   s   | j stdt d| _ |   tj|  |dur|}
n|dur$|}
ntd|
j	|
j
|
j|	d}tjj| |fi |}||_||_||_||_||_||_||_|S )a0  
        Create a new instance of the tensor subclass from the compressed sparse representation.

        We have the option to create the subclass with the compressed representations of both X and X', for training.
        For inference, we only need a single representation (either X or X'), while the corresponding other set will be None.

        Depending on the backend selected, certain fields will be set to None. (CUSPARSELT vs CUTLASS)

        Args:
            shape: The shape of the original dense tensor
            packed: The compressed representation of the original dense tensor
            meta: The metadata of the original dense tensor, if it is stored separately
            packed_t: The compressed representation of the transposed original dense tensor
            meta_t: The metadata of the transposed original dense tensor, if it is stored separately
            compressed_swizzled_bitmask: The masks used by the CUTLASS backend to determine which threads should
                                         participate in the computation. Used for pointwise ops.
            fuse_transpose_cusparselt: When running with cuSPARSELt, we have the option to fuse a transposition
                                       with a matmul, which is useful in the case of 2:4 sparse training.
            alg_id_cusparselt: The algorithm id to use when using cuSPARSELT, will have effect on performance

        Returns:
            torch.Tensor: A torch.Tensor wrapper subclass.

        Raises:
            ValueError: If all of the tensor arguments are None.
        zThe PyTorch API of SparseSemiStructuredTensor is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.sparse module for further information about the project.TNz3At least one of packed or packed_t must be provided)devicedtypelayoutr&   )r   warningswarnUserWarning_load_dispatch_tabletorch_dynamoallow_in_graph
ValueErrorr'   r(   r)   Tensor_make_wrapper_subclassr   r   r    r!   r"   r#   r$   )clsr%   r   r   r    r!   r"   r#   r$   r&   previous_tensorkwargstensor r8   p/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/torch/sparse/semi_structured.py__new__K   s6   '	z"SparseSemiStructuredTensor.__new__returnc                 C   s$   t | dsJ | jj d| j dS )Nr%   z(shape=))hasattr	__class____name__r%   selfr8   r8   r9   __repr__   s   z#SparseSemiStructuredTensor.__repr__c                    s4   t t fdd j} j j j jf}||fS )Nc                    s   t  | d uS N)getattr)xr@   r8   r9   <lambda>   s    z?SparseSemiStructuredTensor.__tensor_flatten__.<locals>.<lambda>)listfilter	__slots__r%   r#   r$   r&   )rA   inner_tensorstensor_metar8   r@   r9   __tensor_flatten__   s   z-SparseSemiStructuredTensor.__tensor_flatten__rK   c           	      C   sN   |\}}}}| || dd | dd | dd | dd | dd |||d	S )Nr   r   r    r!   r"   	r%   r   r   r    r!   r"   r#   r$   r&   )get)	r4   rJ   rK   
outer_sizeouter_strider%   r#   r$   r&   r8   r8   r9   __tensor_unflatten__   s   



z/SparseSemiStructuredTensor.__tensor_unflatten__c                 C   s:   |j | jvrt| j d|j d| j|j  ||||S )NzI only supports a specific set of operations, can't perform requested op (r<   )_overloadpacketr   NotImplementedErrorr?   )r4   functypesargsr6   r8   r8   r9   __torch_dispatch__   s   z-SparseSemiStructuredTensor.__torch_dispatch__Nc                 C   s   t | dddu rXtjjjttjjjttjjjt	tjjj
t	tjjjttjjjttjjjttjjjttjjjttjjjttjjjttjjjt	tjjjti| _|durZ| j| dS dS dS )zT
        Loads the op overload sparse dispatch table for the current class.
        r   N)rD   r.   opsatenvaluesr   indicesr   is_same_sizer   detach_detachr
   tr   viewr   mmr   matmuladdmmr	   linearr   _to_copy
_scaled_mmr   r   update)r4   custom_dispatch_tabler8   r8   r9   r-      s&   












z/SparseSemiStructuredTensor._load_dispatch_tableoriginal_tensorc                 C   s   |j std|j d| dkrtd|  d| s$td|j| jvr6td|j d|  d	|j\}}| j|j j}| j|j j	}||k sY|| sY||k sY|| rhtd
|j d| d| ddS )z_
        Assert that the given tensor is valid for semi-structured sparse compression.
        zError original_tensor.device= z= is not supported! Only CUDA tensors are currently supported.   zError original_tensor.dim = z; is not supported! Only 2d tensors are currently supported.zXError original_tensor is not contiguous!Only contiguous tensors are currently supported.zError original_tensor.dtype z is not a supported dtype for !zError original_tensor.shape zS is not supported! Both dimensions must be larger or equal than and a multiple of (z, r<   N)
is_cudaRuntimeErrorr'   dimis_contiguousr(   r   r%   sparse_min_rowssparse_min_cols)r4   ri   mnmin_rowsmin_colsr8   r8   r9    _validate_device_dim_dtype_shape   s8   
 
z;SparseSemiStructuredTensor._validate_device_dim_dtype_shapedense_inputc                 C   s   |  dksJ |j\}}| j|j j}| j|j j}||k s#|| r(| | nd}||k s2|| r7| | nd}|s=|rItjj	|d|d|fS |S )z
        Calculates padding for dense tensor and pads tensor if necessary.
        If padding is not required, this function returns the original tensor.
        rj   r   )
rn   r%   r   r(   dense_min_rowsdense_min_colsr.   nn
functionalpad)r4   rw   rr   rs   rt   ru   to_pad_mto_pad_nr8   r8   r9   _pad_dense_input  s   
z+SparseSemiStructuredTensor._pad_dense_inputc                 C   s&   | j d }t| tj|| j| jdS )N)r(   r'   )r%   r.   ra   eyer(   r'   )rA   colr8   r8   r9   to_dense+  s   
z#SparseSemiStructuredTensor.to_densec                 C      t rC   rS   r4   ri   r8   r8   r9   
from_dense/  s   z%SparseSemiStructuredTensor.from_densebiasBr   c                K   r   rC   r   )rA   r   r   r6   r8   r8   r9   _mm3  s   zSparseSemiStructuredTensor._mm)Fr   FrC   )r;   N)(r?   
__module____qualname____doc__r   int__annotations__dictr.   r(   r   r   boolr   r   strr   r   r2   rI   staticmethodSizer:   rB   tuplerG   rL   classmethodrQ   _C_disabled_torch_function_impl__torch_function__r   rW   r-   rv   r   r   r   r   r8   r8   r8   r9   r   &   s   
 		
R
*r   Fri   
transposedr;   c                 C   s4   |r
t jdtdd tjrtjjntjj}|	| S )a	  
    This function converts a dense tensor into a sparse semi-structured tensor.
    It will return a SparseSemiStructuredTensor, a subclass of torch.Tensor.

    This function will check to ensure the dense tensor has the right dtype, size, dims, and device.
    We currently only support semi-structured sparse tensors for 2d CUDA tensors.
    Additionally, your tensor must be a positive multiple of the mininum sparse block size, given in
    `_DTYPE_TO_SHAPE_CONSTRAINTS` for each dtype (float32, float16, bfloat16, int8).

    Args:
        original_tensor (Tensor): the dense tensor to convert
        transposed (bool, optional): deprecated arg to be removed in another release. Do not use.
    Returns:
        SparseSemiStructuredTensor: A sparse semi-structured tensor created from the given original_tensor
    Raises:
        None
    Example:
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
        >>> A = torch.Tensor([0, 0, 1, 1]).tile((128, 32)).half().cuda()
        tensor([[0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                ...,
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.]], device='cuda:0', dtype=torch.float16)
        >>> A_sparse = to_sparse_semi_structured(A)
        SparseSemiStructuredTensor(shape=torch.Size([128, 128]))
        >>> A_sparse.values()
        tensor([[1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                ...,
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.]], device='cuda:0', dtype=torch.float16),
        >>> A_sparse.indices()
        tensor([[-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                ...,
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370]], device='cuda:0', dtype=torch.int16))
    zSetting transpose from `to_sparse_semi_structured` is deprecated and will be removed in a future release. `SparseSemiStructuredTensor` only support contiguous input tensors.rj   )
stacklevel)
r*   r+   FutureWarningr   r   r.   sparser   r   r   )ri   r   SPARSE_SUBCLASSr8   r8   r9   r   =  s   1

r   c                       s   e Zd ZdZdZejeddddejeddddej	eddddej
eddddiZed	ejd
d fddZ fddZe	dd	ejd
dfddZdddejdeej d
ejfddZ  ZS )r   a  
    This class implements semi-structured sparsity for the CUTLASS backend.


    In this implementation, the specified elements and metadata are stored seprately,
    in packed and meta respectively.

    When _FORCE_CUTLASS is set, or when cuSPARSELt is not available, this subclass calls into _sparse_semi_structured_(mm|addmm) and
    sparse_semi_structured_from_dense for conversion to the compressed format.
    cutlass          @         ri   r;   c              	   C   s0   |  | t|\}}| |j||d d d |jdS )Nr   r   r    r!   r"   r&   )rv   r   r%   r&   )r4   ri   sparse_tensor_cutlassmeta_tensor_cutlassr8   r8   r9   r     s   
z,SparseSemiStructuredTensorCUTLASS.from_densec                    s<   | j d ur
| jd usJ | j jdkrt| j| j S t  S )Nrj   )r   r   ndimr   superr   r@   r>   r8   r9   r     s   z*SparseSemiStructuredTensorCUTLASS.to_dense r   c              	   C   s2   t j||dd\}}}}}| |j|||||ddS )a  
        This function takes in a unpruned dense tensor and runs a (branchless) static sort across a 4x4 tile.

        It greedily picks the largest values in the tile, upholding the 2:4 sparsity constraint across both rows and columns.
        The algorithm used to prune the matrix is implemented in `_sparse_semi_structured_tile`.

        Then it creates the packed and meta tensors for the compressed sparse representation of the pruned dense tensor.
        It also calculates the packed_t and meta_t tensors for the compressed sparse representation of the transposed
        pruned dense tensor.
        Since we cannot transpose the compressed representations, we store both for the fw/bw pass respectively.

        Finally, this function also computes a compressed swizzled bitmask that encodes the sparsity pattern
        This can be used in the backward pass to mask the gradients.

        [9 1 7 4]                       [9 0 7 0]
        [1 2 3 0]                       [0 2 0 0]
        [8 3 5 4] -> prune 4x4 tile  -> [8 0 0 4] -> pack to CUTLASS semi-structured -> packed
        [1 2 6 2]                       [0 0 6 2]                                    -> metadata

                                                  -> pack to transposed CUTLASS      -> packed_t
                                                     semi-structured representation  -> metadata_t

                                                  -> compute swizzled bitmask        -> compressed_swizzled_bitmask


        The equivalent PyTorch code to create the same five outputs from the dense tensor can be found below:
        ```
        from torch.sparse import SparseSemiStructuredTensorCUTLASS
        from torch.sparse._semi_structured_conversions import _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask

        pruned = _sparse_semi_structured_tile(dense)
        packed_cutlass, meta_cutlass = sparse_semi_structured_from_dense_cutlass(pruned)
        packed_t_cutlass, meta_t_cutlass = sparse_semi_structured_from_dense_cutlass(pruned.t().contiguous())
        bitmask = _compute_compressed_swizzled_bitmask(pruned)

        SparseSemiStructuredTensorCUTLASS(dense.shape, packed_cutlass, meta_cutlass, packed_t_cutlass, meta_t_cutlass, bitmask)
        ```
        T	algorithmuse_cutlassFr   r.   _sparse_semi_structured_tiler%   r4   ri   r   r   r   r    r!   r"   r8   r8   r9   prune_dense_static_sort  s$   1z9SparseSemiStructuredTensorCUTLASS.prune_dense_static_sortNr   r   r   c                K   s   t |tr	td| jj}| jdks|jdkrtd| d| jd u s)| jd u r1td| d|d u r?t	
| j| j|}n
t	|| j| j|}|d | jd  S )NZ`SparseSemiStructuredTensor @ SparseSemiStructuredTensor` is not supported by the hardwarerj   `)` matmul: Broadcasting is not implemented$` matmul: operation is not supportedr   )
isinstancer   r1   r>   r?   r   rS   r   r   r.   _sparse_semi_structured_mm_sparse_semi_structured_addmmr%   )rA   r   r   r6   cls_nameresr8   r8   r9   r     s&   


z%SparseSemiStructuredTensorCUTLASS._mmr   )r?   r   r   r   r   r.   int8r   float16bfloat16float32r   r   r2   r   r   r   r   r   __classcell__r8   r8   r   r9   r     s<    ?r   c                   @   s   e Zd ZdZdZejeddddejeddddej	eddddej
eddddiZedejdd fdd	Ze	
ddejddfddZdddejdeej dejfddZdS )r   a  
    The cuSPARSELt backend expects the specified elements and the metadata to be stored in a single tensor:
    packed = [ specified elements of original tensor | metadata ]
    For an original tensor of size (m, k) we expect the first m * k // 2 elements to be the kept elements
    The rest of the tensor is metadata. Since there is only one tensor, we only use the packed and packed_t
    attributes respectively.

    cuSPARSELt also supports transposition fusion, which is necessary for performant 2:4 sparse training, as well
    as specifying alg_id, a config that affects the performance of the matmul depending on matmul sizes.
    
cusparseltr   r   r   ri   r;   c                 C   s2   |  | | |jt|d d d d tjtj|jd	S )NrM   )rv   r%   r.   _cslt_compressr   r   r   r&   r   r8   r8   r9   r      s   
z/SparseSemiStructuredTensorCUSPARSELT.from_denser   r   c              	   C   s2   t j||dd\}}}}}| |j|||||ddS )a  
        This function does the same thing as described in SparseSemiStructuredCUTLASS, but uses the cuSPASRELt metadata
        layout and sparse matmul.

        The only functional difference is that cuSPARSELt stores `metadata` and `packed` together into a single tensor.

        [9 1 7 4]                       [9 0 7 0]
        [1 2 3 0]                       [0 2 0 0]
        [8 3 5 4] -> prune 4x4 tile  -> [8 0 0 4] -> pack to cuSPARSELT semi-structured -> packed
        [1 2 6 2]                       [0 0 6 2]

                                                  -> pack to transposed cuSPARSELt      -> packed_t
                                                     semi-structured representation

                                                  -> compute swizzled bitmask           -> compressed_swizzled_bitmask


        The equivalent PyTorch code to create the same three outputs from the dense tensor can be found below:
        ```
        from torch.sparse import SparseSemiStructuredTensorCUSPARSELT
        from torch.sparse._semi_structured_conversions import _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask

        pruned = _sparse_semi_structured_tile(dense)
        packed_cusparselt = torch._cslt_compress(pruned)
        packed_t_cusparselt = torch._cslt_compress(pruned.t().contiguous())
        bitmask = _compute_compressed_swizzled_bitmask(pruned)

        SparseSemiStructuredTensorCUSPARSELT(dense.shape, packed_cutlass, None, packed_t_cutlass, None, bitmask)
        ```
        Fr   r   r   r   r8   r8   r9   r   1  s$   (z<SparseSemiStructuredTensorCUSPARSELT.prune_dense_static_sortNr   r   r   c                K   s\  t |tr	td| jdks|jdkrtd| jj d|j| jkrAtd| jj dt| j	 dt|j	 d| j d|j d	|d uri|j| jkritd| jj dt| j	 dt|j	 d
| j d|j d| jt
jkrtd| jj dt| j	 dt|j	 d| j d	| jd u rtd| jj dt
j| j||| j| jd}| jr| S |S )Nr   rj   r   r   z` matmul: trying to do `A=z @ B=z`, with A.dtype=z and B.dtype=zH. This operation is only supported when A and B have the same data type.z + C`, with A.dtype=B.dtype=z and C.dtype=zK. This operation is only supported when A, B and C have the same data type.z`, with A.dtype=B.dtype=zO. mm is not supported for float8_e4m3fn, please use `torch._scaled_mm` instead.r   )r   transpose_resultalg_id)r   r   r1   r   rS   r>   r?   r(   r   r%   r.   float8_e4m3fnr   _cslt_sparse_mmr#   r$   r_   )rA   r   r   r6   r   r8   r8   r9   r   g  sT   
$$$
z(SparseSemiStructuredTensorCUSPARSELT._mmr   )r?   r   r   r   r   r.   r   r   r   r   r   r   r   r2   r   r   r   r   r8   r8   r8   r9   r     s:    6r   )F)r*   collectionsr   typingr   r   r   r.   )torch.sparse._semi_structured_conversionsr   r   !torch.sparse._semi_structured_opsr   r	   r
   r   r   r   r   r   r   r   __all__r   r2   r   r   r   r   r   r8   r8   r8   r9   <module>   s2   0  
D 