o
    h_                  "   @   s  d Z ddlmZmZmZ ddlZddlmZ ddlmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZ ddgZG d	d deZd
de de de de de
 d e_ dee dee dee dee dee dedededededededededefddZdee dee dee dee dee dedededededededededefd d!Zeed"	#		#	#	#	#d&dee dee dee dee dee ded$ee dededededededededef d%dZdS )'z'Implementation for the RAdam algorithm.    )castOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_params_doc_use_grad_for_differentiable_view_as_real	OptimizerParamsTRAdamradamc                       s   e Zd Z					ddddddded	eeef d
eeef dededede	e dededef fddZ
 fddZdd ZedddZ  ZS )r   MbP?g?g+?:0yE>r   FN)foreachmaximize
capturabledifferentiableparamslrbetasepsweight_decaydecoupled_weight_decayr   r   r   r   c                   s   t |tr| dkrtdd|kstd| d|ks%td| d|d   kr1dk s;n td|d  d|d   krGdk sQn td	|d  d|ks\td
| t|||||||	||
d	}t || d S )Nr   zTensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: )	r   r    r!   r"   r   r   r   r#   r   )
isinstancer   numel
ValueErrordictsuper__init__)selfr   r   r    r!   r"   r#   r   r   r   r   defaults	__class__ e/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/torch/optim/radam.pyr+      s0   zRAdam.__init__c                    s   t  | | jD ]Y}|dd  |dd |dd |dd |dd |d D ]4}| j|g }t|dkrat|d	 sat	|d	 }|d rWtj
|t |jd
ntj
|t d|d	< q-q	d S )Nr   r   Fr   r#   r   r   r   stepdtypedevicer4   )r*   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r5   )r,   r:   grouppp_statestep_valr.   r0   r1   r7   F   s(   

zRAdam.__setstate__c           
      C   s   d}|d D ]m}|j d urs|t|O }|| |j jr!td||j  | j| }	t|	dkr^|d r@tjdt	 |j
dntjdt	 d	|	d
< tj|tjd|	d< tj|tjd|	d< ||	d  ||	d  ||	d
  q|S )NFr   z'RAdam does not support sparse gradientsr   r   r0   r3   r$   r6   r2   )memory_formatexp_avg
exp_avg_sq)gradr=   
is_complexappend	is_sparseRuntimeErrorr:   r<   zerosr   r5   r@   
zeros_likepreserve_format)
r,   rA   params_with_gradgradsexp_avgsexp_avg_sqsstate_stepshas_complexrB   r:   r0   r0   r1   _init_groupZ   s2   




zRAdam._init_groupc                 C   s   |    d}|dur!t  | }W d   n1 sw   Y  | jD ]G}g }g }g }g }g }ttttf |d \}	}
| ||||||}t||||||	|
|d |d |d |d |d |d |d	 |d
 |d q$|S )zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr    r   r"   r!   r   r   r   r   r#   )beta1beta2r   r"   r!   r   r   r   r   r#   rU   )	 _cuda_graph_capture_health_checkr=   enable_gradr8   r   tupler?   rV   r   )r,   closurelossrA   rP   rQ   rR   rS   rT   rW   rX   rU   r0   r0   r1   r2   }   sF   

z
RAdam.step)r   r   r   r   FN)__name__
__module____qualname__r   r   r?   r   r[   boolr   r+   r7   rV   r   r2   __classcell__r0   r0   r.   r1   r      sH    	

	
(#a  Implements RAdam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2
                \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
                \lambda \text{ (weightdecay)}, \:\textit{maximize}                               \\
            &\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay}         \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0 \leftarrow 0 \text{ ( second moment)},                                       \\
            &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]
            &\rule{110mm}{0.4pt}  \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{6mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{12mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{6mm} \theta_t \leftarrow \theta_{t-1}                                       \\
            &\hspace{6mm} \textbf{if} \: \lambda \neq 0                                          \\
            &\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
            &\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t}            \\
            &\hspace{12mm}\textbf{else}                                                          \\
            &\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t}                               \\
            &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
                2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]
            &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\
            &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon  } \\
            &\hspace{12mm} r_t \leftarrow
      \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t        \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.

    This implementation provides an option to use either the original weight_decay implementation as in Adam
    (where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
    to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
    (default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
    corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
    about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.

    z
    Args:
        a  
        lr (float, Tensor, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): whether to decouple the weight
            decay as in AdamW to obtain RAdamW. If True, the algorithm does not
            accumulate weight decay in the momentum nor variance. (default: False)
        z	
        a  

    .. _On the variance of the adaptive learning rate and beyond:
        https://arxiv.org/abs/1908.03265
    .. _author's implementation:
        https://github.com/LiyuanLucasLiu/RAdam
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101

    r   rQ   rR   rS   rT   rW   rX   r   r"   r!   r#   r   r   r   rU   c       
            s  t | D ]\}}|s|| n||  }|| }|| || }tj s?|r?t }|jj|jjkr7|jj|v s?J d| dt|rXt|}t|}t|}t|d7 }|r`|nt	|}|dkr{|
rt|
d||   n|j||d}||d|  
|j||d| d d||  }d||   || }dd|  d d| ||     fdd	} fd
d}|rtdk| |  d}|j|| | dd qdkr|j|| |  |  dd q|j|| dd qd S )NIIf capturable=True, params and state_steps must be on supported devices: .r   r   alpha)value   c                      s,   d d     d  d    d S )N   ri         ?r0   r0   )rho_infrho_tr0   r1   _compute_rect=  s   z+_single_tensor_radam.<locals>._compute_rectc                     s.     } r| } n| }  d |  S )Nrk   )sqrtaddadd_)exp_avg_sq_sqrt)bias_correction2r   r!   rG   r0   r1   _compute_adaptive_lrE  s
   
z2_single_tensor_radam.<locals>._compute_adaptive_lr      @r%   g      )	enumerater=   compileris_compilingr   r5   typerI   view_as_realr   mul_rp   lerp_addcmul_whererq   )r   rQ   rR   rS   rT   rW   rX   r   r"   r!   r#   r   r   r   rU   iparamrH   rF   step_tcapturable_supported_devicesr2   bias_correction1bias_corrected_exp_avgrn   rt   updater0   )rs   r   r!   rG   rl   rm   r1   _single_tensor_radam   sb   






r   c       
   %         s0  t | dkrd S |rJ dtj s0|r0tddtfddt| |D s0J d dt| ||||g}|	 D ]\\}}}}}}t
tt |}t
tt |}t
tt |}t
tt |}t
tt |}tj s|d jrtj|tjd	d
dd	d nt|d |rt|||| |rt|}dd  d |rt|}t| t|d t|}t|| t|d t|| t| t| |}n
fdd|D }|dkr
|
rt|d|   n|rtj|||d ntj|||d}t||d   t| t|||d  ~|rt|d}t|d}t|| ~t| d d  t|} t||  ~ t| dd t||D }!~~dd |!D }"t|" t |}t| t|d t|"| t|" t|}t| t|d t| t| t||! ~!t| t|| ~n3fdd|D }!dd |!D }# fdd|D }fddt|#|D }"fddt||!|D }t|}$t|$|	 t|$| t|$ t|$|" t|||$ q>d S )Nr   z#_foreach ops don't support autogradF)supports_xlac                 3   s0    | ]\}}|j j|j jko|j j v V  qd S r^   )r5   ry   ).0rB   r2   )r   r0   r1   	<genexpr>}  s    

z&_multi_tensor_radam.<locals>.<genexpr>rd   re   r%   cpu)r5   rf   r   ri   c                    s8   g | ]}d t |  t |  d t |    qS )ri   r   r   r   r2   )rX   rl   r0   r1   
<listcomp>  s    
z'_multi_tensor_radam.<locals>.<listcomp>rj   c                 S   s"   g | ]\}}t |d k|dqS )ru   r$   r=   r~   )r   nrm   r0   r0   r1   r     s    c                 S   s   g | ]}t |d kddqS )r   r$   r%   r   r   rectr0   r0   r1   r     s    c                    sD   g | ]}|d kr|d |d     d  d  |  d ndqS )   rj   ri   rk   r   r0   )r   rm   )rl   r0   r1   r     s    
c                 S   s   g | ]
}|d kr
d ndqS )r   r%   r0   r   r0   r0   r1   r     s    c                    s   g | ]
}d  t |  qS )r   r   r   )rW   r0   r1   r     s    c                    s    g | ]\}} | | d  qS )r0   )r   r   bc)r   r0   r1   r     s    c                    s6   g | ]\}}}d  t |  d | |  d qS )r   rk   r   r   )r   r2   r   r   )rX   r   r0   r1   r     s    ")r<   r=   rw   rx   r   allzipr   "_group_tensors_by_device_and_dtypevaluesr   listr   is_cpu_foreach_add_r@   r   _foreach_neg_foreach_pow_foreach_neg__foreach_mul__foreach_div__foreach_add_foreach_lerp__foreach_addcmul__foreach_sub_foreach_mul_foreach_sqrt__foreach_sqrt_foreach_reciprocal_)%r   rQ   rR   rS   rT   rW   rX   r   r"   r!   r#   r   r   r   rU   grouped_tensorsgrouped_params_grouped_grads_grouped_exp_avgs_grouped_exp_avg_sqs_grouped_state_steps__grouped_paramsgrouped_gradsgrouped_exp_avgsgrouped_exp_avg_sqsgrouped_state_stepsr   rs   
rho_t_listnumsub2denomr   unrect_step_sizeunrectifiedbufferr0   )rW   rX   r   r   rl   r1   _multi_tensor_radama  s   

	




	












 r   )single_tensor_fnFr   c                C   s   t dd |D std|du rt| |dd\}}|r%tj r%td|r/tj s/t}nt}|| ||||||||||
||||	d dS )	zpFunctional API that performs RAdam algorithm computation.

    See :class:`~torch.optim.RAdam` for details.
    c                 s   s    | ]	}t |tjV  qd S r^   )r&   r=   r   )r   tr0   r0   r1   r   >  s    zradam.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)
rW   rX   r   r"   r!   r   r#   r   r   rU   )r   rL   r   r=   jitis_scriptingr   r   )r   rQ   rR   rS   rT   r#   r   r   r   rU   r   rW   rX   r   r"   r!   r   funcr0   r0   r1   r   $  s<   

)FNFFFF)__doc__typingr   r   r   r=   r   	optimizerr   r   r	   r
   r   r   r   r   r   r   r   r   r   r   __all__r   r   r?   rb   r   r   r   r0   r0   r0   r1   <module>   s   @ 3P	

c	

 D		
