o
    hC                      @   s  d dl mZmZmZ d dlZd dlmZ ddlmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZ ddgZG dd deZd	d
e de de de	 de d e_dee dee dee dee dee dededededededededefddZdee dee dee dee dee dededededededededefddZe
ed 		!	!	!	!d$dee dee dee dee dee d"ee dededededededededefd#dZdS )%    )castOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_params_doc_use_grad_for_differentiable_view_as_real	OptimizerParamsTAdamaxadamaxc                       s   e Zd Z					dddddded	eeef d
eeef dededee	 de	de	de	f fddZ
 fddZdd ZedddZ  ZS )r   Mb`?g?g+?:0yE>r   NF)maximizedifferentiable
capturableparamslrbetasepsweight_decayforeachr   r   r   c             
      s   t |tr| dkrtdd|kstd| d|ks%td| d|d   kr1dk s;n td|d  d|d   krGdk sQn td	|d  d|ks\td
| t||||||||	d}
t ||
 d S )Nr   zTensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: )r   r   r    r!   r"   r   r   r   )
isinstancer   numel
ValueErrordictsuper__init__)selfr   r   r   r    r!   r"   r   r   r   defaults	__class__ f/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/torch/optim/adamax.pyr*      s.   
zAdamax.__init__c                    s   t  | | jD ]S}|dd  |dd |dd |dd |d D ]4}| j|g }t|dkr[t|d s[t	|d }|d rQtj
|t |jd	ntj
|t d
|d< q'q	d S )Nr"   r   Fr   r   r   r   stepdtypedevicer3   )r)   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r4   )r+   r9   grouppp_statestep_valr-   r/   r0   r6   C   s&   

zAdamax.__setstate__c           
      C   s   d}|d D ]n}|j d u rq|t|O }|| |j jr"td||j  | j| }	t|	dkr_|d rAtjdt	 |j
dntjdt	 d	|	d
< tj|tjd|	d< tj|tjd|	d< ||	d  ||	d  ||	d
  q|S )NFr   z(Adamax does not support sparse gradientsr   r   r/   r2   r#   r5   r1   )memory_formatexp_avgexp_inf)gradr<   
is_complexappend	is_sparseRuntimeErrorr9   r;   zerosr   r4   r?   
zeros_likepreserve_format)
r+   r@   params_with_gradgradsexp_avgsexp_infsstate_stepshas_complexrA   r9   r/   r/   r0   _init_groupV   s2   




zAdamax._init_groupc                 C   s   |    d}|dur!t  | }W d   n1 sw   Y  | jD ]K}g }g }g }g }g }|d \}	}
|d }|d }|d }|d }|d }|d }|d	 }| ||||||}t|||||||	|
|||||||d
 q$|S )zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r    r   r!   r"   r   r   r   )
r    beta1beta2r   r!   r"   r   r   r   rT   ) _cuda_graph_capture_health_checkr<   enable_gradr7   rU   r   )r+   closurelossr@   rO   rP   rQ   rR   rS   rV   rW   r    r   r!   r"   r   r   r   rT   r/   r/   r0   r1   y   sR   

zAdamax.step)r   r   r   r   NN)__name__
__module____qualname__r   r   r>   r   tupler   boolr*   r6   rU   r   r1   __classcell__r/   r/   r-   r0   r      sB    	

	
&#a  Implements Adamax algorithm (a variant of Adam based on infinity norm).

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
                \: \lambda \text{ (weight decay)},                                                \\
            &\hspace{13mm}    \epsilon \text{ (epsilon)}                                          \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                u_0 \leftarrow 0 \text{ ( infinity norm)}                                 \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t      \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t               \\
            &\hspace{5mm}u_t      \leftarrow   \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon)   \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
    z
    Args:
        a  
        lr (float, Tensor, optional): learning rate (default: 2e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        z	
        zd

    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980

    r   rP   rQ   rR   rS   r    rV   rW   r   r!   r   r   r   rT   c       	         C   s  t | D ]\}}|| }|
s|n| }|| }|| }|| }tj s?|r?t }|jj|jjkr7|jj|v s?J d| d|d7 }|	dkrN|j||	d}t|rgt	|}t	|}t	|}t	|}|
|d|  |stj||| ||d n!t||d| |dgd}|tj|ddd |r|| d }|| || }||| qd|t|  }|| }|j||| d	 qd S )
NIIf capturable=True, params and state_steps must be on supported devices: .r   r   alpha)outF)keepdim)value)	enumerater<   compileris_compilingr   r4   typeaddrH   view_as_reallerp_maximummul_absadd_cat	unsqueeze
unsqueeze_copy_amaxdiv_addcdiv_r   )r   rP   rQ   rR   rS   r    rV   rW   r   r!   r   r   r   rT   iparamrG   rE   rF   step_tcapturable_supported_devicesnorm_bufneg_bias_correctiondenombias_correctionclrr/   r/   r0   _single_tensor_adamax   sR   





"
r   c       	            s4  |rJ dt | dkrd S tj s0|r0tddtfddt| |D s0J d dt| ||||g}|	 D ]\\}}}}}}t
tt |}t
tt |}t
tt |}t
tt |}t
tt |}|rst|||| |
rzt|}tj s|d jrtj|tjd	d
dd	d nt|d |	dkr|
rtj|||	d ntj|||	d}t||d   t|| |
s|	dkrt|}nt| t|| t|| |rt |}t|d t| t||}t||| q> fdd|D }fdd|D }t|||| q>d S )Nz#_foreach ops don't support autogradr   F)supports_xlac                 3   s0    | ]\}}|j j|j jko|j j v V  qd S r\   )r4   rm   ).0rA   r1   )r   r/   r0   	<genexpr>F  s    

z'_multi_tensor_adamax.<locals>.<genexpr>rc   rd   r$   cpu)r4   re   r   c                    s   g | ]
}d  t |  qS )r   r   )r   r1   )rV   r/   r0   
<listcomp>  s    z(_multi_tensor_adamax.<locals>.<listcomp>c                    s   g | ]
}t  | d  qS )r   )r   bc)r   r/   r0   r     s    )r;   r<   rk   rl   r   allzipr   "_group_tensors_by_device_and_dtypevaluesr   listr   r   _foreach_negis_cpu_foreach_add_r?   _foreach_add_foreach_lerp__foreach_mul__foreach_abs_foreach_abs__foreach_maximum__foreach_pow_foreach_sub__foreach_div__foreach_mul_foreach_addcdiv_)r   rP   rQ   rR   rS   r    rV   rW   r   r!   r   r   r   rT   grouped_tensorsgrouped_params_grouped_grads_grouped_exp_avgs_grouped_exp_infs_grouped_state_steps__grouped_paramsgrouped_gradsgrouped_exp_avgsgrouped_exp_infsgrouped_state_stepsbias_correctionsr   	step_sizer/   )rV   r   r   r0   _multi_tensor_adamax+  s   

	


r   )single_tensor_fnFr"   c
                C   s   t j stdd |D std|du rt| |dd\}}|r*t j r*td|r4t j s4t}nt	}|| |||||
|||||||	|d dS )	zrFunctional API that performs adamax algorithm computation.

    See :class:`~torch.optim.Adamax` for details.
    c                 s   s    | ]	}t |tjV  qd S r\   )r%   r<   r   )r   tr/   r/   r0   r     s    
zadamax.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)	r    rV   rW   r   r!   r   r   rT   r   )
r<   rk   rl   r   rK   r   jitis_scriptingr   r   )r   rP   rQ   rR   rS   r"   r   r   r   rT   r    rV   rW   r   r!   r   funcr/   r/   r0   r     s>   

)NFFFF)typingr   r   r   r<   r   	optimizerr   r   r	   r
   r   r   r   r   r   r   r   r   r   r   __all__r   __doc__r   r>   ra   r   r   r   r/   r/   r/   r0   <module>   s   @ 	
0	

J	

p		
