o
    h
                  ,   @   s  d dl mZmZmZ d dlZd dlmZ ddlmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ ddgZG dd deZd	d
e de de de de
 de d e_dee dee dee dee dee dee dee dee dededeeef deeef deeef dededededed ef&d!d"Z dee dee dee dee dee dee dee dee dededeeef deeef deeef dededededed ef&d#d$Z!dee dee dee dee dee dee dee dee dededededeeef dededededed ed%df(d&d'Z"ee d(		)	)				)	)d-dee dee dee dee dee dee d*ee deded+ee dee dee ded ededededeeef dededef*d,dZ#dS ).    )castOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_device_dtype_check_for_fused_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc
_fused_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_params_doc_stack_if_compiling_use_grad_for_differentiable_view_as_real
DeviceDictDeviceDtypeDict	OptimizerParamsTAdamadamc                       s   e Zd Z					ddddddddded	eeef d
eeeef eeef f dededede	e dededede	e def fddZ
 fddZdd ZedddZ  ZS )r   MbP?g?g+?:0yE>r   FN)foreachmaximize
capturabledifferentiablefuseddecoupled_weight_decayparamslrbetasepsweight_decayamsgradr   r    r!   r"   r#   r$   c                   s  t |tr|r|	std| dkrtdd|ks"td| d|ks-td| d|d   kr9dk sCn td	|d  d|d   krOdk sYn td
|d  d|ksdtd| t |d trrt |d tst |d trt |d tstdt |d tr|	s|rtd|d  dkrtdt |d tr|	s|rtd|d  dkrtdt||||||||	|
||d}t || |r|
rtdd| _	|rtdd S d S )NElr as a Tensor is not supported for capturable=False and foreach=Truer   zTensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: z0betas must be either both floats or both TensorszKbetas[0] as a Tensor is not supported for capturable=False and foreach=Truez!Tensor betas[0] must be 1-elementzKbetas[1] as a Tensor is not supported for capturable=False and foreach=Truez!Tensor betas[1] must be 1-element)r&   r'   r(   r)   r*   r    r   r!   r"   r#   r$   z)`fused` does not support `differentiable`Tz0`fused` and `foreach` cannot be `True` together.)

isinstancer   
ValueErrornumelfloatdictsuper__init__RuntimeError_step_supports_amp_scaling)selfr%   r&   r'   r(   r)   r*   r   r    r!   r"   r#   r$   defaults	__class__ d/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/torch/optim/adam.pyr4   "   s|   
zAdam.__init__c                    s   t  | | jD ]k}|dd |dd |dd  |dd |dd |dd |dd }|d	 D ]:}| j|g }t|d
krst|d sst	|d }|d s]|d ritj
|t|d|jdntj
|t d|d< q9q	d S )Nr*   Fr    r   r!   r"   r$   r#   r%   r   stepis_fuseddtypedevicerA   )r3   __setstate__param_groups
setdefaultstategetlentorch	is_tensorr1   tensorr   rB   )r7   rG   groupr#   pp_statestep_valr9   r;   r<   rD   q   s4   
zAdam.__setstate__c                 C   s~  d}|d D ]}	|	j d ur|t|	O }||	 |	j jr!td||	j  | j|	 }
t|
dkr||d r:t|	 |d sB|d rPtj	dt
|d d|	jd	ntjd
t
 d|
d< tj|	tjd|
d< tj|	tjd|
d< |d r|tj|	tjd|
d< ||
d  ||
d  |d r||
d  |d r|
d jrtd|d rt|d r|d std||
d  q|S )NFr%   zJAdam does not support sparse gradients, please consider SparseAdam insteadr   r#   r!   r;   r>   r@   r,   rC   r=   )memory_formatexp_avg
exp_avg_sqr*   max_exp_avg_sqr"   zB`requires_grad` is not supported for `step` in differentiable moder   r&   r+   )gradrJ   
is_complexappend	is_sparser5   rG   rI   r	   zerosr   rB   rL   
zeros_likepreserve_formatrequires_gradrK   )r7   rM   params_with_gradgradsexp_avgsexp_avg_sqsmax_exp_avg_sqsstate_stepshas_complexrN   rG   r;   r;   r<   _init_group   sl   








zAdam._init_groupc                 C   s   |    d}|dur!t  | }W d   n1 sw   Y  | jD ]V}g }g }g }g }g }g }	|d \}
}| |||||||	}t||||||	f|d ||
||d |d |d |d |d |d	 |d
 |d t| ddt| dd|d d q$|S )zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr'   r*   r&   r)   r(   r    r   r!   r"   r#   
grad_scale	found_infr$   )r*   rc   beta1beta2r&   r)   r(   r    r   r!   r"   r#   re   rf   r$   ) _cuda_graph_capture_health_checkrJ   enable_gradrE   rd   r   getattr)r7   closurelossrM   r]   r^   r_   r`   ra   rb   rg   rh   rc   r;   r;   r<   r=      s`   





z	Adam.step)r   r   r   r   FN)__name__
__module____qualname__r   r   r1   r   tupleboolr   r4   rD   rd   r   r=   __classcell__r;   r;   r9   r<   r   !   sT    	
	
OKaf  Implements Adam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)}          \\
            &\hspace{13mm}      \lambda \text{ (weight decay)},  \: \textit{amsgrad},
                \:\textit{maximize},  \: \epsilon \text{ (epsilon)}                              \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0\leftarrow 0 \text{ (second moment)},\: v_0^{max}\leftarrow 0          \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{5mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{10mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{5mm}\textbf{if} \: \lambda \neq 0                                           \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{5mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{5mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{5mm}\textbf{if} \: amsgrad                                                  \\
            &\hspace{10mm} v_t^{max} \leftarrow \mathrm{max}(v_{t-1}^{max},v_t)                  \\
            &\hspace{10mm}\widehat{v_t} \leftarrow v_t^{max}/\big(1-\beta_2^t \big)              \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}\widehat{v_t} \leftarrow   v_t/\big(1-\beta_2^t \big)                  \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/
                \big(\sqrt{\widehat{v_t}} + \epsilon \big)                                       \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
    z
    Args:
        a  
        lr (float, Tensor, optional): learning rate (default: 1e-3). A tensor LR
            is not yet supported for all our implementations. Please use a float
            LR if you are not also specifying fused=True or capturable=True.
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): if True, this optimizer is
            equivalent to AdamW and the algorithm will not accumulate weight
            decay in the momentum nor variance. (default: False)
        amsgrad (bool, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False)
        z	
        a=  
    .. Note::
        A prototype implementation of Adam and AdamW for MPS supports `torch.float32` and `torch.float16`.
    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ

    r%   r^   r_   r`   ra   rb   re   rf   r*   rc   rg   rh   r&   r)   r(   r    r!   r"   r$   c          '      C   s`  |d u r|d u s
J t j r$t|tsJ t|
tsJ t|ts$J t|
tr2|
j|
jf|
i}nd }t| D ]\}}|sC|| n||  }|| }|| }|| }t j	
 st|rtt }|jj|jjkrl|jj|v stJ d| d|d7 }|dkr|r|d||   n"|rt|tr|jr|| |}n|j||d}n|j||d}t |rt |}t |}t |}|rt || ||< t |}|j}|d ur|j}||f}||vr|
j||dd||< || }n|
}||d|  |r!t|tr!|jr|jt |d| d n||j||d| d	 n||j||d| d	 |s4|r|}|rSt|
trS|
jrLd|
|   } nd|
|  } nd|
|  } |rvt|trv|jrod||   }!nd||  }!nd||  }!||  }"|" }#|! }$|r|r||  }%n|| }%|| t |%| ||  |$|#  ||# }&n| |$|#  ||# }&|r|| |& nL|||& nEt|}d|
|  } d||  }!||  }"|!d
 }$|rt j|| ||| d ||  |$ |}&n	| |$ |}&|j||&|" d	 |r-t | | r-t || ||< q8d S )NIIf capturable=True, params and state_steps must be on supported devices: .r   r   alphaT)rB   rA   non_blocking)weight)value      ?)out)rJ   jitis_scriptingr.   r1   r   rB   rA   	enumeratecompileris_compilingr   typemul_r\   addcmul_cloneaddrV   view_as_realtolerp_squarenegsqrtcopy_maximumadd_addcdiv_r   view_as_complex)'r%   r^   r_   r`   ra   rb   re   rf   r*   rc   rg   rh   r&   r)   r(   r    r!   r"   r$   
beta1_dictiparamrU   rR   rS   step_tcapturable_supported_devicesrB   rA   keydevice_beta1r=   bias_correction1bias_correction2	step_sizestep_size_negbias_correction2_sqrtrT   denomr;   r;   r<   _single_tensor_adamX  s   








	

 r   c          +         sl  t | dkrd S ttr|stdt tr(|std  dkr(tdttr=|s3td dkr=tdtj s_|r_t	dd	t
fd
dt| |D s_J d d|d u rg|d u siJ |roJ dt| |||||g}t trt jdkr j ind }| D ]\\}}}}}}}ttt |}ttt |}ttt |}ttt |}ttt |} |d j}!|d ur|!|vrՈ j|!dd||!< |r||! n }"|	r|rttt |}#t|||||# nt|||| |rt|}tj s| d jrtj| tjddddd nt| d |dkrF|r2t|d|   n|r>tj|||d ntj|||d}t||d|"  t| ttjrgt|d }$d}%n|}$d }%t||$||% ~~$|rt | }&t| }'t|&d t|'d t |' t!|& t"|& t#|' |&}(|'})|rttt |}#t$|#| t%|#}*nt%|}*t!|*|) t|*| t!|*|( t&|||* q fdd| D }&fdd| D }'t'fdd|&D }(dd |'D })|rttt |}#t$|#| t%|#}*nt%|}*t!|*|) t|*| t&|||*|( qd S )Nr   r+   zHbeta1 as a Tensor is not supported for capturable=False and foreach=Truer   zTensor beta1 must be 1-elementzHbeta2 as a Tensor is not supported for capturable=False and foreach=TruezTensor beta2 must be 1-elementF)supports_xlac                 3   s0    | ]\}}|j j|j jko|j j v V  qd S rn   )rB   r   ).0rN   r=   )r   r;   r<   	<genexpr>I  s    

z%_multi_tensor_adam.<locals>.<genexpr>ru   rv   z#_foreach ops don't support autogradcpuTrB   ry   r-   )rB   rw   c                       g | ]
}d  t |  qS r   r   r   r=   )rg   r;   r<   
<listcomp>      z&_multi_tensor_adam.<locals>.<listcomp>c                    r   r   r   r   )rh   r;   r<   r     r   c                    s   g | ]} | d  qS )r;   r   bc)r&   r;   r<   r     s    c                 S   s   g | ]}|d  qS )r|   r;   r   r;   r;   r<   r     s    )(rI   r.   r   r5   r/   r0   rJ   r   r   r   allzipr   "_group_tensors_by_device_and_dtypestrrB   valuesr   listr   r   _foreach_negis_cpu_foreach_add_rL   _foreach_mul__foreach_add_foreach_lerp__foreach_mul_foreach_addcmul__foreach_pow_foreach_sub__foreach_neg__foreach_div__foreach_reciprocal__foreach_sqrt__foreach_maximum__foreach_sqrt_foreach_addcdiv_r   )+r%   r^   r_   r`   ra   rb   re   rf   r*   rc   rg   rh   r&   r)   r(   r    r!   r"   r$   grouped_tensorsr   device_params_device_grads_device_exp_avgs_device_exp_avg_sqs_device_max_exp_avg_sqs_device_state_steps__device_paramsdevice_gradsdevice_exp_avgsdevice_exp_avg_sqsdevice_state_stepsrB   r   device_max_exp_avg_sqsscaled_device_gradsr{   r   r   r   r   exp_avg_sq_sqrtr;   )rg   rh   r   r&   r<   _multi_tensor_adam  s  















 r   returnc          '      C   s  | sd S |r
t d|d ur|j|ini }|d ur|j|ini }t|tr1t|jdkr1|j|ind }t| |||||g}| D ]\\}}\\}}}}}}}tt	t |}tt	t |} tt	t |}!tt	t |}"tt	t |}#|j
dkr|d u r|d u sJ d\}$}%|d ur|||j|dd}$|d ur|||j|dd}%|d ur||vr|j|dd||< || }t|#d |stjntj}&|&|| |!|"||#|||
|||||$|%d	 |%d urt|#|%gt|#  qBd S )
Nz9Adam with fused=True does not support differentiable=Truer   mps)NNT)ry   r   r   )	r*   r&   rg   rh   r)   r(   r    re   rf   )r5   rB   r.   r   r   r   r   itemsr   r   r   rF   r   rJ   r   _fused_adam__fused_adamw_r   rI   )'r%   r^   r_   r`   ra   rb   re   rf   r*   rc   rg   rh   r&   r)   r(   r    r!   r"   r$   grad_scale_dictfound_inf_dictlr_dictr   rB   r   r   r   r   r   r   r   r   r   r   r   r   device_grad_scaledevice_found_inffuncr;   r;   r<   _fused_adam  s   $
r   )single_tensor_fnFr   r#   c                C   s  |	du r|du rt | |dd\}}|rt|tr|sd}|	du r"d}	|du r(d}tj s:tdd |D s:td|rEtj	 rEtd|	rPtj	 rPtd|	rZtj	 sZt
}n|rdtj	 sdt}nt}|| |||||f|||||||||||
||d	 dS )
znFunctional API that performs Adam algorithm computation.

    See :class:`~torch.optim.Adam` for details.
    NF)	use_fusedc                 s   s    | ]	}t |tjV  qd S rn   )r.   rJ   r   )r   tr;   r;   r<   r     s    
zadam.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsz6torch.jit.script not supported with foreach optimizersz4torch.jit.script not supported with fused optimizers)r*   rc   rg   rh   r&   r)   r(   r    r!   r"   re   rf   r$   )r   r.   r   rJ   r   r   r   r5   r~   r   r   r   r   )r%   r^   r_   r`   ra   rb   r   r!   r"   r#   re   rf   rc   r$   r*   rg   rh   r&   r)   r(   r    r   r   r;   r;   r<   r   a  s^   #
)NFFNNNFF)$typingr   r   r   rJ   r   	optimizerr   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   __all__r   __doc__r   rs   r1   r   r   r   r   r;   r;   r;   r<   <module>   s  T r%G




 ?




 i


c
	

