# mypy: allow-untyped-defs
from __future__ import annotations

import abc
import contextlib
import dataclasses
import difflib
import io
import logging
import sys
from typing import Any, Callable, TYPE_CHECKING

import torch
import torch.fx
from torch._subclasses.fake_tensor import unset_fake_temporarily
from torch.onnx._internal.fx import diagnostics, onnxfunction_dispatcher


if TYPE_CHECKING:
    from torch._subclasses import fake_tensor


@dataclasses.dataclass
class PackageInfo:
    package_name: str
    version: str | None
    commit_hash: str | None

    def to_onnx_domain_string(self) -> str:
        return ".".join(
            filter(None, ("pkg", self.package_name, self.version, self.commit_hash))
        )

    @classmethod
    def from_python_class(cls, python_class_name: type | str) -> PackageInfo:
        if isinstance(python_class_name, type):
            python_class_name = python_class_name.__module__
        package_name = python_class_name.split(".")[0]
        package = __import__(package_name)
        version = getattr(package, "__version__", None)
        # TODO: Figure out how to retrieve commit hash.
        commit_hash = None
        return cls(package_name, version, commit_hash)


@dataclasses.dataclass
class GraphModuleOnnxMeta:
    package_info: PackageInfo


@contextlib.contextmanager
def _patch_difflib_sequence_matcher_init():
    """Context patching `difflib.SequenceMatcher` for fx readable graph.

    Under this context, the `autojunk` argument of `difflib.SequenceMatcher` will always
    be considered as `False`. This is to prevent `difflib.SequenceMatcher` recognizing
    stacktrace messages in fx readable graph as junk, as these messages tend to be long (>200)
    and repeat multiple times, which falls under the junk filter criteria.

    `difflib.SequenceMatcher` is used underneath by all sorts of diffing functions
    in `difflib`, including `difflib.unified_diff`, `difflib.ndiff`, `difflib.context_diff`.
    Unfortunately, there is no way to pass `autojunk` argument to these functions, and
    they all default to `True`. This context patching will affect all of them.

    `Reference: Automatic junk heuristic <https://docs.python.org/3/library/difflib.html>`_
    """
    original_init = difflib.SequenceMatcher.__init__

    def patched_init(self, isjunk=None, a="", b="", autojunk=True):
        original_init(self, isjunk, a, b, autojunk=False)

    difflib.SequenceMatcher.__init__ = patched_init  # type: ignore[assignment]
    try:
        yield
    finally:
        difflib.SequenceMatcher.__init__ = original_init  # type: ignore[assignment]


def _unified_diff(a: str, b: str) -> str:
    """Return a string containing the unified diff of two strings.

    This function calls a patched version of `difflib.unified_diff` with `autojunk` set
    to `False` for `difflib.SequenceMatcher` class. More details can be found in
    `_patch_difflib_sequence_matcher_init` function.

    Args:
        a: The first string.
        b: The second string.

    Returns:
        The unified diff of the two strings. If there is no diff, return "<no diff>".

    Example::

        >>> a = '''class GraphModule(torch.nn.Module):
        ...     def forward(self, input_ids : torch.Tensor, attention_mask : torch.Tensor):
        ...         # File: /modeling.py:770, code: input_ids = input_ids.view(-1, input_shape[-1])
        ...         view = input_ids.view(-1, 3);  input_ids = None
        ... '''
        >>> b = '''class <lambda>(torch.nn.Module):
        ...     def forward(self, input_ids: i64[1, 3], attention_mask: i64[1, 3]):
        ...         # File: /modeling.py:770, code: input_ids = input_ids.view(-1, input_shape[-1])
        ...         view: i64[1, 3] = torch.ops.aten.view.default(input_ids, [-1, 3]);  input_ids = None
        ... '''
        >>> print(_unified_diff(a, b))
        ---
        +++
        @@ -1,4 +1,4 @@
        -class GraphModule(torch.nn.Module):
        -    def forward(self, input_ids : torch.Tensor, attention_mask : torch.Tensor):
        +class <lambda>(torch.nn.Module):
        +    def forward(self, input_ids: i64[1, 3], attention_mask: i64[1, 3]):
                # File: /modeling.py:770, code: input_ids = input_ids.view(-1, input_shape[-1])
        -        view = input_ids.view(-1, 3);  input_ids = None
        +        view: i64[1, 3] = torch.ops.aten.view.default(input_ids, [-1, 3]);  input_ids = None
    """

    a_list = a.splitlines(keepends=True)
    b_list = b.splitlines(keepends=True)

    with _patch_difflib_sequence_matcher_init():
        # Set `n` to `sys.maxsize` to show entire graph when there is a diff.
        diff = "".join(difflib.unified_diff(a_list, b_list, n=sys.maxsize))

    if not diff:
        return "<no diff>"
    return diff


def _transform_diagnose_call_message_formatter(
    run: Callable,
    self: Transform,
    *args: Any,
    **kwargs: Any,
) -> str:
    return f"Running {self.__class__.__name__} pass. "


def maybe_fx_graph_tabular(graph: torch.fx.Graph) -> str | None:
    """Return the Graph nodes in tabular format. Equivalent to stdout of `graph.print_tabular()`.
    If `tabulate` is not installed, return `None`.

    Args:
        graph: The Graph to print.

    Returns:
        The Graph printed in a tabular format. None if `tabulate` is not installed.
    """
    f = io.StringIO()
    with contextlib.redirect_stdout(f):
        try:
            graph.print_tabular()
        except ImportError:
            return None
    return f.getvalue()


class Transform(abc.ABC):
    """Base class for FX graph transformations to be used by FX-ONNX exporter.

    Similar to `FX Interpreter <https://pytorch.org/docs/stable/fx.html#torch.fx.Interpreter>`_,
    specializations of this class execute the FX graph Node-by-Node.
    Methods in the `Transform` class can be overridden to customize the behavior of the model.
    This pattern can be useful for many things, including writing code transformations as well as analysis passes.

    The following methods can be overridden::

        _run()
            +-- run_node()
                +-- placeholder()
                +-- get_attr()
                +-- call_function()
                +-- call_method()
                +-- call_module()
                +-- output()

    One important aspect to note is that if the transformation modifies the model input and/or output signature,
    (e.g. additional inputs/outputs are added to the model), :class:`InputAdaptStep` and/or :class:`OutputAdaptStep`
    are needed to reconcile :attr:`ONNXProgram.model_proto`.
    That is, the model signature and the model representation must match.

    As an additional feature, this class provides builtin support for transformation recording using the diagnostics.
    The granularity of overriding is up to the user. And it affects the granularity of
    the diagnostics information. For example, if `_run()` is overridden, the
    diagnostics information will only contain graph level transformation. Instead,
    if `call_function()` is overridden, the diagnostics information will additionally
    contain the node level information of `call_function()`.

    TODO(bowbao): Add more overridable methods in call hierarchy
    TODO(bowbao): Create an example once more overridable methods are added.
    """

    diagnostic_context: diagnostics.DiagnosticContext
    """The diagnostic context for recording diagnostics."""

    module: torch.fx.GraphModule
    """The module to be transformed."""

    fake_mode: fake_tensor.FakeTensorMode | None
    """The existing fake mode detected from `self.module`."""

    def __init__(
        self,
        diagnostic_context: diagnostics.DiagnosticContext,
        module: torch.fx.GraphModule,
    ):
        """Initialize the transform.

        Args:
            diagnostic_context: The diagnostic context for recording diagnostics.
            module: The module to be transformed.
        """
        self.diagnostic_context = diagnostic_context
        self.module = module
        self.fake_mode = self._detect_fake_mode()

    def _detect_fake_mode(self) -> fake_tensor.FakeTensorMode | None:
        """Detect fake mode from the graph.

        Scan through all nodes in graph and their meta['val'] to detect fake mode.
        """
        fake_tensors = [node.meta.get("val") for node in self.module.graph.nodes]
        with unset_fake_temporarily():
            return torch._dynamo.utils.detect_fake_mode(fake_tensors)

    def _maybe_fakefy_args(
        self, fake_mode: fake_tensor.FakeTensorMode | None, *args: Any
    ) -> tuple[Any, ...]:
        if fake_mode is None:
            return args
        # NB: This should hit the cache if tensors were fakefied before.
        # E.g., when the fx graph is produced by Dynamo.
        return tuple(
            fake_mode.from_tensor(t) if isinstance(t, torch.Tensor) else t for t in args
        )

    @abc.abstractmethod
    def _run(self, *args, **kwargs) -> torch.fx.GraphModule: ...

    @diagnostics.diagnose_call(
        diagnostics.rules.fx_pass,
        diagnostic_message_formatter=_transform_diagnose_call_message_formatter,
    )
    def run(self, *args, **kwargs) -> torch.fx.GraphModule:
        """Run the transform on `self.module`.

        Note that this method may or may not mutate `self.module`, and the returned
        `GraphModule` could be either `self.module` or a new `GraphModule`.

        Args:
            *args: Positional arguments for `self.module` to run.
            **kwargs: Keyword arguments for `self.module` to run.
        """
        diagnostic = self.diagnostic_context.inflight_diagnostic(
            rule=diagnostics.rules.fx_pass
        )
        diagnostic.info(
            "For detailed logging of graph modifications by this pass, either set "
            "`DiagnosticOptions.verbosity_level` to `logging.DEBUG` or use the environment variable "
            "`TORCH_LOGS='onnx_diagnostics'`."
        )

        # Gather graph information before transform.
        graph_diff_log_level = logging.DEBUG
        if diagnostic.logger.isEnabledFor(graph_diff_log_level):
            # Cannot use LazyString because the graph may have been mutated at evaluation time.
            old_readable_graph = self.module.print_readable(print_output=False)
            old_tabular = maybe_fx_graph_tabular(self.module.graph)
        else:
            # Set to empty string to avoid unbound warning. This value should never be
            # used since the log level is not enabled.
            old_readable_graph = ""
            old_tabular = ""

        module = self._run(*args, **kwargs)

        # Gather graph information after transform.
        if diagnostic.logger.isEnabledFor(graph_diff_log_level):
            new_readable_graph = module.print_readable(print_output=False)
            new_tabular = maybe_fx_graph_tabular(module.graph)

            with diagnostic.log_section(graph_diff_log_level, "Graph diff:"):
                diagnostic.log(
                    graph_diff_log_level,
                    "```\n%s\n```",
                    diagnostics.LazyString(
                        _unified_diff, old_readable_graph, new_readable_graph
                    ),
                )

            with diagnostic.log_section(graph_diff_log_level, "Tabular diff:"):
                if old_tabular is None or new_tabular is None:
                    diagnostic.log(
                        graph_diff_log_level,
                        "Tabular diff is not available because `tabulate` is not installed.",
                    )
                else:
                    diagnostic.log(
                        graph_diff_log_level,
                        "```\n%s\n```",
                        diagnostics.LazyString(_unified_diff, old_tabular, new_tabular),
                    )

        return module


class AnalysisResult(abc.ABC):  # noqa: B024
    ...


class Analysis(abc.ABC):
    def __init__(
        self,
        diagnostic_context: diagnostics.DiagnosticContext,
        module: torch.fx.GraphModule,
        onnxfunction_dispatcher: onnxfunction_dispatcher.OnnxFunctionDispatcher,
    ):
        self.diagnostic_context = diagnostic_context
        self.module = module
        self.onnxfunction_dispatcher = onnxfunction_dispatcher

    @abc.abstractmethod
    def analyze(self, diagnostic_level: diagnostics.infra.Level) -> AnalysisResult: ...
