o
    h]                     @   st   d dl mZ d dlZd dlmZ d dlmZmZ d dlm	Z	 ddl
mZ dd	gZG d
d deZG dd	 d	eZdS )    )OptionalN)Tensor)
functionalinit)	Parameter   )Module	EmbeddingEmbeddingBagc                       s  e Zd ZU dZg dZeed< eed< ee ed< ee ed< eed< e	ed< e
ed	< e	ed
< e	ed< 									d dededee dee dede	de	dee
 de	ddf fddZd!ddZd!ddZde
de
fddZdefddZe						d"ddZ  ZS )#r	   a  A simple lookup table that stores embeddings of a fixed dictionary and size.

    This module is often used to store word embeddings and retrieve them using indices.
    The input to the module is a list of indices, and the output is the corresponding
    word embeddings.

    Args:
        num_embeddings (int): size of the dictionary of embeddings
        embedding_dim (int): the size of each embedding vector
        padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
                                     therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
                                     i.e. it remains as a fixed "pad". For a newly constructed Embedding,
                                     the embedding vector at :attr:`padding_idx` will default to all zeros,
                                     but can be updated to another value to be used as the padding vector.
        max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
                                    is renormalized to have norm :attr:`max_norm`.
        norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
        scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of
                                                the words in the mini-batch. Default ``False``.
        sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
                                 See Notes for more details regarding sparse gradients.

    Attributes:
        weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
                         initialized from :math:`\mathcal{N}(0, 1)`

    Shape:
        - Input: :math:`(*)`, IntTensor or LongTensor of arbitrary shape containing the indices to extract
        - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`

    .. note::
        Keep in mind that only a limited number of optimizers support
        sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
        :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)

    .. note::
        When :attr:`max_norm` is not ``None``, :class:`Embedding`'s forward method will modify the
        :attr:`weight` tensor in-place. Since tensors needed for gradient computations cannot be
        modified in-place, performing a differentiable operation on ``Embedding.weight`` before
        calling :class:`Embedding`'s forward method requires cloning ``Embedding.weight`` when
        :attr:`max_norm` is not ``None``. For example::

            n, d, m = 3, 5, 7
            embedding = nn.Embedding(n, d, max_norm=1.0)
            W = torch.randn((m, d), requires_grad=True)
            idx = torch.tensor([1, 2])
            a = embedding.weight.clone() @ W.t()  # weight must be cloned for this to be differentiable
            b = embedding(idx) @ W.t()  # modifies weight in-place
            out = (a.unsqueeze(0) + b.unsqueeze(1))
            loss = out.sigmoid().prod()
            loss.backward()

    Examples::

        >>> # an Embedding module containing 10 tensors of size 3
        >>> embedding = nn.Embedding(10, 3)
        >>> # a batch of 2 samples of 4 indices each
        >>> input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> embedding(input)
        tensor([[[-0.0251, -1.6902,  0.7172],
                 [-0.6431,  0.0748,  0.6969],
                 [ 1.4970,  1.3448, -0.9685],
                 [-0.3677, -2.7265, -0.1685]],

                [[ 1.4970,  1.3448, -0.9685],
                 [ 0.4362, -0.4004,  0.9400],
                 [-0.6431,  0.0748,  0.6969],
                 [ 0.9124, -2.3616,  1.1151]]])


        >>> # example with padding_idx
        >>> embedding = nn.Embedding(10, 3, padding_idx=0)
        >>> input = torch.LongTensor([[0, 2, 0, 5]])
        >>> embedding(input)
        tensor([[[ 0.0000,  0.0000,  0.0000],
                 [ 0.1535, -2.0309,  0.9315],
                 [ 0.0000,  0.0000,  0.0000],
                 [-0.1655,  0.9897,  0.0635]]])

        >>> # example of changing `pad` vector
        >>> padding_idx = 0
        >>> embedding = nn.Embedding(3, 3, padding_idx=padding_idx)
        >>> embedding.weight
        Parameter containing:
        tensor([[ 0.0000,  0.0000,  0.0000],
                [-0.7895, -0.7089, -0.0364],
                [ 0.6778,  0.5803,  0.2678]], requires_grad=True)
        >>> with torch.no_grad():
        ...     embedding.weight[padding_idx] = torch.ones(3)
        >>> embedding.weight
        Parameter containing:
        tensor([[ 1.0000,  1.0000,  1.0000],
                [-0.7895, -0.7089, -0.0364],
                [ 0.6778,  0.5803,  0.2678]], requires_grad=True)
    )num_embeddingsembedding_dimpadding_idxmax_norm	norm_typescale_grad_by_freqsparser   r   r   r   r   r   weightfreezer   N       @F_weight_freezereturnc                    s   |
|d}t    || _|| _|d ur5|dkr"|| jk s!J dn|dk r5|| j ks0J d| j| }|| _|| _|| _|| _|d u r[tt	j
||ffi ||	 d| _|   nt|j||gkshJ dt||	 d| _|| _d S )Ndevicedtyper   z)Padding_idx must be within num_embeddings)requires_grad?Shape of weight does not match num_embeddings and embedding_dim)super__init__r   r   r   r   r   r   r   torchemptyr   reset_parameterslistshaper   )selfr   r   r   r   r   r   r   r   r   r   r   factory_kwargs	__class__ k/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/torch/nn/modules/sparse.pyr      s@   




zEmbedding.__init__c                 C      t | j |   d S Nr   normal_r   _fill_padding_idx_with_zeror$   r(   r(   r)   r!         zEmbedding.reset_parametersc                 C   N   | j d ur%t  | j| j  d W d    d S 1 sw   Y  d S d S Nr   r   r   no_gradr   fill_r/   r(   r(   r)   r.      
   

"z%Embedding._fill_padding_idx_with_zeroinputc              	   C   s"   t || j| j| j| j| j| jS r+   )F	embeddingr   r   r   r   r   r   )r$   r7   r(   r(   r)   forward   s   zEmbedding.forwardc                 C   sp   d}| j d ur|d7 }| jd ur|d7 }| jdkr|d7 }| jdur&|d7 }| jdur/|d7 }|jd	i | jS )
N!{num_embeddings}, {embedding_dim}, padding_idx={padding_idx}, max_norm={max_norm}   , norm_type={norm_type}F), scale_grad_by_freq={scale_grad_by_freq}z, sparse=Truer(   )r   r   r   r   r   format__dict__r$   sr(   r(   r)   
extra_repr   s   




zEmbedding.extra_reprTc                 C   s<   |  dks
J d|j\}}	| ||	|||||||d	}
|
S )a^  Create Embedding instance from given 2-dimensional FloatTensor.

        Args:
            embeddings (Tensor): FloatTensor containing weights for the Embedding.
                First dimension is being passed to Embedding as ``num_embeddings``, second as ``embedding_dim``.
            freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
                Equivalent to ``embedding.weight.requires_grad = False``. Default: ``True``
            padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
                                         therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
                                         i.e. it remains as a fixed "pad".
            max_norm (float, optional): See module initialization documentation.
            norm_type (float, optional): See module initialization documentation. Default ``2``.
            scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
            sparse (bool, optional): See module initialization documentation.

        Examples::

            >>> # FloatTensor containing pretrained weights
            >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
            >>> embedding = nn.Embedding.from_pretrained(weight)
            >>> # Get embeddings for index 1
            >>> input = torch.LongTensor([1])
            >>> # xdoctest: +IGNORE_WANT("non-deterministic")
            >>> embedding(input)
            tensor([[ 4.0000,  5.1000,  6.3000]])
        r>   4Embeddings parameter is expected to be 2-dimensional)	r   r   r   r   r   r   r   r   r   )dimr#   )cls
embeddingsr   r   r   r   r   r   rowscolsr9   r(   r(   r)   from_pretrained   s    &
zEmbedding.from_pretrained)	NNr   FFNFNNr   N)TNNr   FF)__name__
__module____qualname____doc____constants__int__annotations__r   floatboolr   r   r!   r.   r:   strrE   classmethodrL   __classcell__r(   r(   r&   r)   r	      sl   
 a
	

/
c                       sl  e Zd ZU dZg dZeed< eed< ee ed< eed< e	ed< e
ed< eed	< e	ed
< e	ed< ee ed< 										d%dededee dede	d	ed
e	dee
 de	dee ddf fddZd&ddZd&ddZ		d'de
dee
 dee
 de
fddZdefddZe	 							d(d!e
d"e	dee dede	d	ed
e	de	dee dd fd#d$Z  ZS ))r
   aL  Compute sums or means of 'bags' of embeddings, without instantiating the intermediate embeddings.

    For bags of constant length, no :attr:`per_sample_weights`, no indices equal to :attr:`padding_idx`,
    and with 2D inputs, this class

        * with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=1)``,
        * with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=1)``,
        * with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=1)``.

    However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these
    operations.

    EmbeddingBag also supports per-sample weights as an argument to the forward
    pass. This scales the output of the Embedding before performing a weighted
    reduction as specified by ``mode``. If :attr:`per_sample_weights` is passed, the
    only supported ``mode`` is ``"sum"``, which computes a weighted sum according to
    :attr:`per_sample_weights`.

    Args:
        num_embeddings (int): size of the dictionary of embeddings
        embedding_dim (int): the size of each embedding vector
        max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
                                    is renormalized to have norm :attr:`max_norm`.
        norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
        scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of
                                                the words in the mini-batch. Default ``False``.
                                                Note: this option is not supported when ``mode="max"``.
        mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
                                 ``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights`
                                 into consideration. ``"mean"`` computes the average of the values
                                 in the bag, ``"max"`` computes the max value over each bag.
                                 Default: ``"mean"``
        sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See
                                 Notes for more details regarding sparse gradients. Note: this option is not
                                 supported when ``mode="max"``.
        include_last_offset (bool, optional): if ``True``, :attr:`offsets` has one additional element, where the last element
                                      is equivalent to the size of `indices`. This matches the CSR format.
        padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the
                                     gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated
                                     during training, i.e. it remains as a fixed "pad". For a newly constructed
                                     EmbeddingBag, the embedding vector at :attr:`padding_idx` will default to all
                                     zeros, but can be updated to another value to be used as the padding vector.
                                     Note that the embedding vector at :attr:`padding_idx` is excluded from the
                                     reduction.

    Attributes:
        weight (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)`
                         initialized from :math:`\mathcal{N}(0, 1)`.

    Examples::

        >>> # an EmbeddingBag module containing 10 tensors of size 3
        >>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum')
        >>> # a batch of 2 samples of 4 indices each
        >>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long)
        >>> offsets = torch.tensor([0, 4], dtype=torch.long)
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> embedding_sum(input, offsets)
        tensor([[-0.8861, -5.4350, -0.0523],
                [ 1.1306, -2.5798, -1.0044]])

        >>> # Example with padding_idx
        >>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum', padding_idx=2)
        >>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9], dtype=torch.long)
        >>> offsets = torch.tensor([0, 4], dtype=torch.long)
        >>> embedding_sum(input, offsets)
        tensor([[ 0.0000,  0.0000,  0.0000],
                [-0.7082,  3.2145, -2.6251]])

        >>> # An EmbeddingBag can be loaded from an Embedding like so
        >>> embedding = nn.Embedding(10, 3, padding_idx=2)
        >>> embedding_sum = nn.EmbeddingBag.from_pretrained(
                embedding.weight,
                padding_idx=embedding.padding_idx,
                mode='sum')
    )	r   r   r   r   r   moder   include_last_offsetr   r   r   r   r   r   r   rZ   r   r[   r   Nr   Fmeanr   r   c                    s   ||d}t    || _|| _|| _|| _|| _|
d ur>|
dkr+|
| jk s*J dn|
dk r>|
| j ks9J d| j|
 }
|
| _|d u rXtt	j
||ffi || _|   nt|j||gkseJ dt|| _|| _|| _|	| _d S )Nr   r   z)padding_idx must be within num_embeddingsr   )r   r   r   r   r   r   r   r   r   r   r    r   r!   r"   r#   rZ   r   r[   )r$   r   r   r   r   r   rZ   r   r   r[   r   r   r   r%   r&   r(   r)   r   r  sB   





zEmbeddingBag.__init__c                 C   r*   r+   r,   r/   r(   r(   r)   r!     r0   zEmbeddingBag.reset_parametersc                 C   r1   r2   r3   r/   r(   r(   r)   r.     r6   z(EmbeddingBag._fill_padding_idx_with_zeror7   offsetsper_sample_weightsc                 C   s.   t || j|| j| j| j| j| j|| j| j	S )a  Forward pass of EmbeddingBag.

        Args:
            input (Tensor): Tensor containing bags of indices into the embedding matrix.
            offsets (Tensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines
                the starting index position of each bag (sequence) in :attr:`input`.
            per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
                to indicate all weights should be taken to be ``1``. If specified, :attr:`per_sample_weights`
                must have exactly the same shape as input and is treated as having the same
                :attr:`offsets`, if those are not ``None``. Only supported for ``mode='sum'``.

        Returns:
            Tensor output shape of `(B, embedding_dim)`.

        .. note::

            A few notes about ``input`` and ``offsets``:

            - :attr:`input` and :attr:`offsets` have to be of the same type, either int or long

            - If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences)
              each of fixed length ``N``, and this will return ``B`` values aggregated in a way
              depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case.

            - If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of
              multiple bags (sequences).  :attr:`offsets` is required to be a 1D tensor containing the
              starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets` of shape `(B)`,
              :attr:`input` will be viewed as having ``B`` bags. Empty bags (i.e., having 0-length) will have
              returned vectors filled by zeros.
        )
r8   embedding_bagr   r   r   r   rZ   r   r[   r   )r$   r7   r]   r^   r(   r(   r)   r:     s   $zEmbeddingBag.forwardc                 C   st   d}| j d ur|d7 }| jdkr|d7 }| jdur|d7 }|d7 }| jd ur*|d7 }|jdi d	d
 | j D S )Nr;   r=   r>   r?   Fr@   z, mode={mode}r<   c                 S   s   i | ]	\}}|t |qS r(   )repr).0kvr(   r(   r)   
<dictcomp>  s    z+EmbeddingBag.extra_repr.<locals>.<dictcomp>r(   )r   r   r   r   rA   rB   itemsrC   r(   r(   r)   rE     s   



 zEmbeddingBag.extra_reprTrI   r   c
                 C   sH   |  dks
J d|j\}
}| |
|||||||||	d
}| |j_|S )a  Create EmbeddingBag instance from given 2-dimensional FloatTensor.

        Args:
            embeddings (Tensor): FloatTensor containing weights for the EmbeddingBag.
                First dimension is being passed to EmbeddingBag as 'num_embeddings', second as 'embedding_dim'.
            freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
                Equivalent to ``embeddingbag.weight.requires_grad = False``. Default: ``True``
            max_norm (float, optional): See module initialization documentation. Default: ``None``
            norm_type (float, optional): See module initialization documentation. Default ``2``.
            scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
            mode (str, optional): See module initialization documentation. Default: ``"mean"``
            sparse (bool, optional): See module initialization documentation. Default: ``False``.
            include_last_offset (bool, optional): See module initialization documentation. Default: ``False``.
            padding_idx (int, optional): See module initialization documentation. Default: ``None``.

        Examples::

            >>> # FloatTensor containing pretrained weights
            >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
            >>> embeddingbag = nn.EmbeddingBag.from_pretrained(weight)
            >>> # Get embeddings for index 1
            >>> input = torch.LongTensor([[1, 0]])
            >>> # xdoctest: +IGNORE_WANT("non-deterministic")
            >>> embeddingbag(input)
            tensor([[ 2.5000,  3.7000,  4.6500]])
        r>   rF   )
r   r   r   r   r   r   rZ   r   r[   r   )rG   r#   r   r   )rH   rI   r   r   r   r   rZ   r   r[   r   rJ   rK   embeddingbagr(   r(   r)   rL     s$   (

zEmbeddingBag.from_pretrained)
Nr   Fr\   FNFNNNrM   )NN)TNr   Fr\   FFN)rN   rO   rP   rQ   rR   rS   rT   r   rU   rV   r   rW   r   r!   r.   r:   rE   rX   rL   rY   r(   r(   r&   r)   r
     s   
 M	

0

2	
)typingr   r   r   torch.nnr   r8   r   torch.nn.parameterr   moduler   __all__r	   r
   r(   r(   r(   r)   <module>   s    