o
    h                     @   sV   d dl m  mZ d dlmZ ddlmZ ddgZG dd deZ	G dd deZ
dS )	    N)Tensor   )ModulePairwiseDistanceCosineSimilarityc                	       sn   e Zd ZU dZg dZeed< eed< eed< 	dd	ededed
df fddZde	de	d
e	fddZ
  ZS )r   aM  
    Computes the pairwise distance between input vectors, or between columns of input matrices.

    Distances are computed using ``p``-norm, with constant ``eps`` added to avoid division by zero
    if ``p`` is negative, i.e.:

    .. math ::
        \mathrm{dist}\left(x, y\right) = \left\Vert x-y + \epsilon e \right\Vert_p,

    where :math:`e` is the vector of ones and the ``p``-norm is given by.

    .. math ::
        \Vert x \Vert _p = \left( \sum_{i=1}^n  \vert x_i \vert ^ p \right) ^ {1/p}.

    Args:
        p (real, optional): the norm degree. Can be negative. Default: 2
        eps (float, optional): Small value to avoid division by zero.
            Default: 1e-6
        keepdim (bool, optional): Determines whether or not to keep the vector dimension.
            Default: False
    Shape:
        - Input1: :math:`(N, D)` or :math:`(D)` where `N = batch dimension` and `D = vector dimension`
        - Input2: :math:`(N, D)` or :math:`(D)`, same shape as the Input1
        - Output: :math:`(N)` or :math:`()` based on input dimension.
          If :attr:`keepdim` is ``True``, then :math:`(N, 1)` or :math:`(1)` based on input dimension.

    Examples::
        >>> pdist = nn.PairwiseDistance(p=2)
        >>> input1 = torch.randn(100, 128)
        >>> input2 = torch.randn(100, 128)
        >>> output = pdist(input1, input2)
    )normepskeepdimr   r   r	          @ư>FpreturnNc                    s    t    || _|| _|| _d S N)super__init__r   r   r	   )selfr   r   r	   	__class__ m/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/torch/nn/modules/distance.pyr   1   s   

zPairwiseDistance.__init__x1x2c                 C   s   t ||| j| j| jS r   )Fpairwise_distancer   r   r	   r   r   r   r   r   r   forward9   s   zPairwiseDistance.forward)r
   r   F)__name__
__module____qualname____doc____constants__float__annotations__boolr   r   r   __classcell__r   r   r   r   r   
   s"   
 !c                       s`   e Zd ZU dZddgZeed< eed< ddededdf fdd	Zd
e	de	de	fddZ
  ZS )r   a  Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along `dim`.

    .. math ::
        \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}.

    Args:
        dim (int, optional): Dimension where cosine similarity is computed. Default: 1
        eps (float, optional): Small value to avoid division by zero.
            Default: 1e-8
    Shape:
        - Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`
        - Input2: :math:`(\ast_1, D, \ast_2)`, same number of dimensions as x1, matching x1 size at dimension `dim`,
              and broadcastable with x1 at other dimensions.
        - Output: :math:`(\ast_1, \ast_2)`
    Examples::
        >>> input1 = torch.randn(100, 128)
        >>> input2 = torch.randn(100, 128)
        >>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
        >>> output = cos(input1, input2)
    dimr   r   :0yE>r   Nc                    s   t    || _|| _d S r   )r   r   r%   r   )r   r%   r   r   r   r   r   W   s   

zCosineSimilarity.__init__r   r   c                 C   s   t ||| j| jS r   )r   cosine_similarityr%   r   r   r   r   r   r   \   s   zCosineSimilarity.forward)r   r&   )r   r   r   r   r    intr"   r!   r   r   r   r$   r   r   r   r   r   =   s   
 )torch.nn.functionalnn
functionalr   torchr   moduler   __all__r   r   r   r   r   r   <module>   s    3