o
    h:)                     @   s  d Z ddgZddlmZ ddlZddlmZmZ ddlm	Z	m
Z
 		dd	ed
edee dee def
ddZ			dd	ed
ee dee dee deeeef f
ddZ			dd	ed
ee dee dee deeeef f
ddZ			dd	ed
ee dededeeeef f
ddZdS )zBImplement various linear algebra algorithms for low rank matrices.svd_lowrankpca_lowrank    )OptionalN)_linalg_utilsTensor)handle_torch_functionhas_torch_function   AqniterMreturnc           
      C   s   |du rdn|}|   st| n| j}tj}tj| jd ||| jd}|| |}|dur4|||| }tj	
|j}t|D ]2}	|| j|}|durS|||j| }tj	
|j}|| |}|durj|||| }tj	
|j}q?|S )a  Return tensor :math:`Q` with :math:`q` orthonormal columns such
    that :math:`Q Q^H A` approximates :math:`A`. If :math:`M` is
    specified, then :math:`Q` is such that :math:`Q Q^H (A - M)`
    approximates :math:`A - M`. without instantiating any tensors
    of the size of :math:`A` or :math:`M`.

    .. note:: The implementation is based on the Algorithm 4.4 from
              Halko et al., 2009.

    .. note:: For an adequate approximation of a k-rank matrix
              :math:`A`, where k is not known in advance but could be
              estimated, the number of :math:`Q` columns, q, can be
              choosen according to the following criteria: in general,
              :math:`k <= q <= min(2*k, m, n)`. For large low-rank
              matrices, take :math:`q = k + 5..10`.  If k is
              relatively small compared to :math:`min(m, n)`, choosing
              :math:`q = k + 0..2` may be sufficient.

    .. note:: To obtain repeatable results, reset the seed for the
              pseudorandom number generator

    Args::
        A (Tensor): the input tensor of size :math:`(*, m, n)`

        q (int): the dimension of subspace spanned by :math:`Q`
                 columns.

        niter (int, optional): the number of subspace iterations to
                               conduct; ``niter`` must be a
                               nonnegative integer. In most cases, the
                               default value 2 is more than enough.

        M (Tensor, optional): the input tensor's mean of size
                              :math:`(*, m, n)`.

    References::
        - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
          structure with randomness: probabilistic algorithms for
          constructing approximate matrix decompositions,
          arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
          `arXiv <http://arxiv.org/abs/0909.4061>`_).
    Nr	   dtypedevice)
is_complex_utilsget_floating_dtyper   matmultorchrandnshaper   linalgqrQrangemH)
r
   r   r   r   r   r   RXr   _ r"   b/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/torch/_lowrank.pyget_approximate_basis   s$   1

r$      c                 C   s\   t j s&| |f}ttt|t jtdfs&t|r&t	t
|| |||dS t| |||dS )a  Return the singular value decomposition ``(U, S, V)`` of a matrix,
    batches of matrices, or a sparse matrix :math:`A` such that
    :math:`A \approx U \operatorname{diag}(S) V^{\text{H}}`. In case :math:`M` is given, then
    SVD is computed for the matrix :math:`A - M`.

    .. note:: The implementation is based on the Algorithm 5.1 from
              Halko et al., 2009.

    .. note:: For an adequate approximation of a k-rank matrix
              :math:`A`, where k is not known in advance but could be
              estimated, the number of :math:`Q` columns, q, can be
              choosen according to the following criteria: in general,
              :math:`k <= q <= min(2*k, m, n)`. For large low-rank
              matrices, take :math:`q = k + 5..10`.  If k is
              relatively small compared to :math:`min(m, n)`, choosing
              :math:`q = k + 0..2` may be sufficient.

    .. note:: This is a randomized method. To obtain repeatable results,
              set the seed for the pseudorandom number generator

    .. note:: In general, use the full-rank SVD implementation
              :func:`torch.linalg.svd` for dense matrices due to its 10x
              higher performance characteristics. The low-rank SVD
              will be useful for huge sparse matrices that
              :func:`torch.linalg.svd` cannot handle.

    Args::
        A (Tensor): the input tensor of size :math:`(*, m, n)`

        q (int, optional): a slightly overestimated rank of A.

        niter (int, optional): the number of subspace iterations to
                               conduct; niter must be a nonnegative
                               integer, and defaults to 2

        M (Tensor, optional): the input tensor's mean of size
                              :math:`(*, m, n)`, which will be broadcasted
                              to the size of A in this function.

    References::
        - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
          structure with randomness: probabilistic algorithms for
          constructing approximate matrix decompositions,
          arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
          `arXiv <https://arxiv.org/abs/0909.4061>`_).

    N)r   r   r   )r   jitis_scriptingsetmaptypeissubsetr   r   r   r   _svd_lowrank)r
   r   r   r   
tensor_opsr"   r"   r#   r   V   s   
5c                 C   s   |d u rdn|}| j dd  \}}tj}|d ur||  }||k r-| j} |d ur-|j}t| |||d}||j| }|d urG|||j| }tjj	|dd\}	}
}|j}||	}	||k rc||	}	}|	|
|fS )Nr%   r   r   F)full_matrices)
r   r   r   broadcast_tosizer   r$   r   r   svd)r
   r   r   r   mnr   r   BUSVhVr"   r"   r#   r,      s&   


r,   Tcenterc                 C   s  t j st| t jurt| frtt| f| |||dS | jdd \}}|du r0t	d||}n|dkr;|t	||ksHt
d| dt	|| |dksTt
d| d	t| }|sct| ||dd
S t| rt| jdkrst
dt jj| dd| }| d }t jdt||j|jd}	||	d< t j|	| |df|| jd}
t j| jdd d|f || jd}t j|
|j}t| |||d
S | jddd}t| | ||dd
S )a  Performs linear Principal Component Analysis (PCA) on a low-rank
    matrix, batches of such matrices, or sparse matrix.

    This function returns a namedtuple ``(U, S, V)`` which is the
    nearly optimal approximation of a singular value decomposition of
    a centered matrix :math:`A` such that :math:`A \approx U \operatorname{diag}(S) V^{\text{H}}`

    .. note:: The relation of ``(U, S, V)`` to PCA is as follows:

                - :math:`A` is a data matrix with ``m`` samples and
                  ``n`` features

                - the :math:`V` columns represent the principal directions

                - :math:`S ** 2 / (m - 1)` contains the eigenvalues of
                  :math:`A^T A / (m - 1)` which is the covariance of
                  ``A`` when ``center=True`` is provided.

                - ``matmul(A, V[:, :k])`` projects data to the first k
                  principal components

    .. note:: Different from the standard SVD, the size of returned
              matrices depend on the specified rank and q
              values as follows:

                - :math:`U` is m x q matrix

                - :math:`S` is q-vector

                - :math:`V` is n x q matrix

    .. note:: To obtain repeatable results, reset the seed for the
              pseudorandom number generator

    Args:

        A (Tensor): the input tensor of size :math:`(*, m, n)`

        q (int, optional): a slightly overestimated rank of
                           :math:`A`. By default, ``q = min(6, m,
                           n)``.

        center (bool, optional): if True, center the input tensor,
                                 otherwise, assume that the input is
                                 centered.

        niter (int, optional): the number of subspace iterations to
                               conduct; niter must be a nonnegative
                               integer, and defaults to 2.

    References::

        - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
          structure with randomness: probabilistic algorithms for
          constructing approximate matrix decompositions,
          arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
          `arXiv <http://arxiv.org/abs/0909.4061>`_).

    )r   r;   r   r.   Nr%   r   zq(=z>) must be non-negative integer and not greater than min(m, n)=zniter(=z) must be non-negative integerr/   r	   z8pca_lowrank input is expected to be 2-dimensional tensor)r.   )dimr      T)r<   keepdim)r   r&   r'   r*   r   r   r   r   r   min
ValueErrorr   r   r,   	is_sparselensparsesumindiceszerosr   r   sparse_coo_tensorvaluesonesmmmTmean)r
   r   r;   r   r4   r5   r   ccolumn_indicesrE   C_t	ones_m1_tr   Cr"   r"   r#   r      sJ   
B

$)r	   N)r%   r	   N)NTr	   )__doc____all__typingr   r   r   r   r   torch.overridesr   r   intr$   tupler   r,   boolr   r"   r"   r"   r#   <module>   sz    
L
B
$