o
    oh[                     @  s   d Z ddlmZ ddlmZ ddlmZmZmZm	Z	 ddl
mZ ddlmZ ddlmZ ddlmZmZ dd	lmZ g d
ZddddddddZG dd deZdddZdd ZdS )a  
Julia code printer

The `JuliaCodePrinter` converts SymPy expressions into Julia expressions.

A complete code generator, which uses `julia_code` extensively, can be found
in `sympy.utilities.codegen`.  The `codegen` module can be used to generate
complete source code files.

    )annotations)Any)MulPowSRational)_keep_coeff)equal_valued)CodePrinter)
precedence
PRECEDENCEsearch)3sincostancotseccscasinacosatanacotasecacscsinhcoshtanhcothsechcschasinhacoshatanhacothasechacschsincatan2signfloorlogexpcbrtsqrterferfcerfi	factorialgammadigammatrigamma	polygammabetaairyaiairyaiprimeairybiairybiprimebesseljbesselybesselibesselkerfinverfcinvabsceilconjhankelh1hankelh2imagreal)Absceiling	conjugatehankel1hankel2imrec                      s  e Zd ZU dZdZdZddddZeej	fi di d	d	d
Z	de
d< i f fdd	Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ Z fd%d&Zd'd( Z fd)d*Z fd+d,Z fd-d.Z fd/d0Zd1d2 Zd3d4 Zd5d6 Zd7d8 Z d9d: Z!d;d< Z"e"Z#d=d> Z$d?d@ Z%dAdB Z&dCdD Z'dEdF Z(dGdH Z)dIdJ Z*dKdL Z+dMdN Z,dOdP Z-dQdR Z.dSdT Z/dUdV Z0dWdX Z1dYdZ Z2d[d\ Z3d]d^ Z4d_d` Z5  Z6S )aJuliaCodePrinterzD
    A printer to convert expressions to strings of Julia code.
    _juliaJuliaz&&z||!)andornot   T)	precisionuser_functionscontractinlinezdict[str, Any]_default_settingsc                   sH   t  | tttt| _| jtt |di }| j| d S )NrY   )	super__init__dictzipknown_fcns_src1known_functionsupdateknown_fcns_src2get)selfsettings	userfuncs	__class__ h/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/printing/julia.pyr^   G   s
   zJuliaCodePrinter.__init__c                 C  s   |d S )N   rk   )rf   prk   rk   rl   _rate_index_positionO      z%JuliaCodePrinter._rate_index_positionc                 C  s   d| S )Nz%srk   )rf   
codestringrk   rk   rl   _get_statementS   rp   zJuliaCodePrinter._get_statementc                 C  s
   d |S )Nz# {}format)rf   textrk   rk   rl   _get_commentW      
zJuliaCodePrinter._get_commentc                 C  s   d ||S )Nzconst {} = {}rs   )rf   namevaluerk   rk   rl   _declare_number_const[      z&JuliaCodePrinter._declare_number_constc                 C  s
   |  |S N)indent_code)rf   linesrk   rk   rl   _format_code_   rw   zJuliaCodePrinter._format_codec                   s    |j \ } fddt|D S )Nc                 3  s&    | ]}t  D ]}||fV  qqd S r|   )range).0jirowsrk   rl   	<genexpr>f   s   $ z<JuliaCodePrinter._traverse_matrix_indices.<locals>.<genexpr>)shaper   )rf   matcolsrk   r   rl   _traverse_matrix_indicesc   s   
z)JuliaCodePrinter._traverse_matrix_indicesc                 C  s^   g }g }|D ]$}t | j|j|jd |jd g\}}}|d|||f  |d q||fS )N   zfor %s = %s:%send)map_printlabellowerupperappend)rf   indices
open_linesclose_linesr   varstartstoprk   rk   rl   _get_loop_opening_endingi   s   
z)JuliaCodePrinter._get_loop_opening_endingc                   sH  |j r|jr| d jrdtj |  S t| | \}}|dk r/t| |}d}nd}g }g }g }j	dvrA|
 }nt|}|D ]_}	|	jr|	jr|	jjr|	jjr|	jdkrk|t|	j|	j dd qHt|	jd jd	krt|	jtr||	 |t|	j|	j  qH|	jr|	tjur|	jd	kr|t|	j qH||	 qH|ptjg} fd
d|D }
 fdd|D }|D ]}	|	j|v rd|||	j  |||	j< qdd }|s||||
 S t|d	kr|d j rdnd}d||||
 ||d f S tdd |D rdnd}d||||
 ||||f S )Nr   z%sim- )oldnoneF)evaluater   c                      g | ]} | qS rk   parenthesizer   xprecrf   rk   rl   
<listcomp>       z/JuliaCodePrinter._print_Mul.<locals>.<listcomp>c                   r   rk   r   r   r   rk   rl   r      r   (%s)c                 S  sH   |d }t dt| D ]}| |d  jrdnd}d|||| f }q|S )Nr   r   *z.*%s %s %s)r   len	is_number)aa_strrr   mulsymrk   rk   rl   multjoin   s
   z-JuliaCodePrinter._print_Mul.<locals>.multjoin/./r   c                 s      | ]}|j V  qd S r|   r   )r   birk   rk   rl   r          z.JuliaCodePrinter._print_Mul.<locals>.<genexpr>z
%s %s (%s))r   is_imaginaryas_coeff_Mul
is_integerr   r   ImaginaryUnitr   r   orderas_ordered_factorsr   	make_argsis_commutativeis_Powr,   is_Rationalis_negativer   r   baser   args
isinstanceInfinityrn   r   qOneindexall)rf   exprcer)   r   b	pow_parenr   itemr   b_strr   divsymrk   r   rl   
_print_Mulu   sV   



 

 zJuliaCodePrinter._print_Mulc                 C  s,   |  |j}|  |j}|j}d|||S )Nz{} {} {})r   lhsrhsrel_oprt   )rf   r   lhs_coderhs_codeoprk   rk   rl   _print_Relational   s   z"JuliaCodePrinter._print_Relationalc                 C  s   t dd |jD rdnd}t|}t|jdr d| |j S |jrTt|jdr;|jjr/dnd	}d
|| |jf S t|jdrT|jjrGdnd	}d|| 	|j|f S d| 	|j||| 	|j|f S )Nc                 s  r   r|   r   r   rk   rk   rl   r      r   z.JuliaCodePrinter._print_Pow.<locals>.<genexpr>^z.^g      ?zsqrt(%s)g      r   r   z1 %s sqrt(%s)r   z1 %s %sr   )
r   r   r   r	   r,   r   r   r   r   r   )rf   r   	powsymbolPRECsymrk   rk   rl   
_print_Pow   s   zJuliaCodePrinter._print_Powc                 C  s(   t |}d| |j|| |j|f S )Nz%s ^ %s)r   r   r   r,   rf   r   r   rk   rk   rl   _print_MatPow   s   zJuliaCodePrinter._print_MatPowc                      | j d rdS t |S )Nr[   pi	_settingsr]   _print_NumberSymbolrf   r   ri   rk   rl   	_print_Pi      
zJuliaCodePrinter._print_Pic                 C     dS )NrN   rk   r   rk   rk   rl   _print_ImaginaryUnit      z%JuliaCodePrinter._print_ImaginaryUnitc                   r   )Nr[   r   r   r   ri   rk   rl   _print_Exp1   r   zJuliaCodePrinter._print_Exp1c                   r   )Nr[   
eulergammar   r   ri   rk   rl   _print_EulerGamma   r   z"JuliaCodePrinter._print_EulerGammac                   r   )Nr[   catalanr   r   ri   rk   rl   _print_Catalan   r   zJuliaCodePrinter._print_Catalanc                   r   )Nr[   goldenr   r   ri   rk   rl   _print_GoldenRatio   r   z#JuliaCodePrinter._print_GoldenRatioc                 C  s   ddl m} ddlm} ddlm} |j}|j}| jd sHt	|j|rHg }g }|j
D ]\}	}
||||	 ||
 q*|t|| }| |S | jd r]||sW||r]| ||S | |}| |}| d||f S )Nr   )
Assignment)	Piecewise)IndexedBaser[   rZ   z%s = %s)sympy.codegen.astr   $sympy.functions.elementary.piecewiser   sympy.tensor.indexedr   r   r   r   r   r   r   r`   r   has_doprint_loopsrr   )rf   r   r   r   r   r   r   expressions
conditionsr   r   tempr   r   rk   rk   rl   _print_Assignment  s(   


z"JuliaCodePrinter._print_Assignmentc                 C  r   )NInfrk   r   rk   rk   rl   _print_Infinity#  r   z JuliaCodePrinter._print_Infinityc                 C  r   )Nz-Infrk   r   rk   rk   rl   _print_NegativeInfinity'  r   z(JuliaCodePrinter._print_NegativeInfinityc                 C  r   )NNaNrk   r   rk   rk   rl   
_print_NaN+  r   zJuliaCodePrinter._print_NaNc                   s    dd  fdd|D  d S )NzAny[, c                 3  s    | ]}  |V  qd S r|   r   r   r   rf   rk   rl   r   0      z/JuliaCodePrinter._print_list.<locals>.<genexpr>])joinr   rk   r	  rl   _print_list/  s    zJuliaCodePrinter._print_listc                 C  s.   t |dkrd| |d  S d| |d S )Nr   z(%s,)r   r   r  )r   r   	stringifyr   rk   rk   rl   _print_tuple3  s   zJuliaCodePrinter._print_tuplec                 C  r   )Ntruerk   r   rk   rk   rl   _print_BooleanTrue;  r   z#JuliaCodePrinter._print_BooleanTruec                 C  r   )Nfalserk   r   rk   rk   rl   _print_BooleanFalse?  r   z$JuliaCodePrinter._print_BooleanFalsec                 C  s   t | S r|   )strr   r   rk   rk   rl   _print_boolC  r{   zJuliaCodePrinter._print_boolc                   s   t j|jv rd|j|jf S |j|jfdkrd|d  S |jdkr,d|j dddd S |jdkr?dd	 fd
d|D  S d|j ddddd S )Nzzeros(%s, %s))r   r   z[%s])r   r   r   r    )rowstartrowendcolsepr  c                      g | ]}  |qS rk   r  r  r	  rk   rl   r   U      z6JuliaCodePrinter._print_MatrixBase.<locals>.<listcomp>z;
)r  r  rowsepr  )r   Zeror   r   r   tabler  )rf   Ark   r	  rl   _print_MatrixBaseK  s   

z"JuliaCodePrinter._print_MatrixBasec                 C  sr   ddl m} | }|dd |D }|dd |D }|dd |D }d| || || ||j|jf S )Nr   )Matrixc                 S  s   g | ]}|d  d qS )r   r   rk   r   krk   rk   rl   r   ^  r   z;JuliaCodePrinter._print_SparseRepMatrix.<locals>.<listcomp>c                 S  s   g | ]}|d  d  qS )r   rk   r"  rk   rk   rl   r   _  r   c                 S  s   g | ]}|d  qS )   rk   r"  rk   rk   rl   r   `  s    zsparse(%s, %s, %s, %s, %s))sympy.matricesr!  col_listr   r   r   )rf   r  r!  LIJAIJrk   rk   rl   _print_SparseRepMatrixZ  s   z'JuliaCodePrinter._print_SparseRepMatrixc                 C  s.   | j |jtd ddd|jd |jd f  S )NAtomT)strictz[%s,%s]r   )r   parentr   r   r   r   rk   rk   rl   _print_MatrixElemente  s   z%JuliaCodePrinter._print_MatrixElementc                   sL    fdd}  |jd ||j|jjd  d ||j|jjd  d S )Nc                   s   | d d }| d }| d }  |}||krdn  |}|dkr8|dkr,||kr,dS ||kr2|S |d | S d|  ||fS )Nr   r   r$  r   :)r   r  )r   limlhsteplstrhstrr	  rk   rl   strslicek  s   
z5JuliaCodePrinter._print_MatrixSlice.<locals>.strslice[r   ,r   r  )r   r.  rowslicer   colslice)rf   r   r7  rk   r	  rl   _print_MatrixSlicej  s   z#JuliaCodePrinter._print_MatrixSlicec                   s0    fdd|j D }d |jjd|f S )Nc                   r  rk   r  )r   r   r	  rk   rl   r     r  z3JuliaCodePrinter._print_Indexed.<locals>.<listcomp>z%s[%s]r9  )r   r   r   r   r  )rf   r   indsrk   r	  rl   _print_Indexed  s   zJuliaCodePrinter._print_Indexedc                 C  s   |  |jS r|   )r   r   r   rk   rk   rl   
_print_Idx  r{   zJuliaCodePrinter._print_Idxc                 C  s   d|  |jd  S )Nzeye(%s)r   )r   r   r   rk   rk   rl   _print_Identity  s   z JuliaCodePrinter._print_Identityc                   s   d  fdd jD S )Nz .* c                   s   g | ]
} |t qS rk   r   r   r   argr   rf   rk   rl   r     s    z;JuliaCodePrinter._print_HadamardProduct.<locals>.<listcomp>)r  r   r   rk   rD  rl   _print_HadamardProduct  s   z'JuliaCodePrinter._print_HadamardProductc                 C  s*   t |}d| |j|| |j|gS )Nz.**)r   r  r   r   r,   r   rk   rk   rl   _print_HadamardPower  s
   z%JuliaCodePrinter._print_HadamardPowerc                 C  s$   |j dkr
t|jS d|j|j f S )Nr   z%s // %s)r   r  rn   r   rk   rk   rl   _print_Rational  s   

z JuliaCodePrinter._print_Rationalc                 C  D   ddl m}m} |j}|tjd|  ||jtj | }| |S )Nr   )r.   r<   r$  )	sympy.functionsr.   r<   argumentr   Pir   Halfr   )rf   r   r.   r<   r   expr2rk   rk   rl   	_print_jn     $
zJuliaCodePrinter._print_jnc                 C  rH  )Nr   )r.   r=   r$  )	rI  r.   r=   rJ  r   rK  r   rL  r   )rf   r   r.   r=   r   rM  rk   rk   rl   	_print_yn  rO  zJuliaCodePrinter._print_ync           
        s  |j d jdkrtdg } jd r9 fdd|j d d D }d |j d j }d|| }d	| d
 S t|j D ]J\}\}}|dkrS|d |  n|t	|j d krf|dkrf|d n
|d |   |}	||	 |t	|j d kr|d q>d|S )Nr   TzAll Piecewise expressions must contain an (expr, True) statement to be used as a default condition. Without one, the generated expression may not evaluate to anything under some condition.r[   c                   s(   g | ]\}}d   | |qS )z({}) ? ({}) :)rt   r   )r   r   r   r	  rk   rl   r     s
    z5JuliaCodePrinter._print_Piecewise.<locals>.<listcomp>z (%s)
()r   zif (%s)r   elsezelseif (%s)r   )
r   cond
ValueErrorr   r   r   r  	enumerater   r   )
rf   r   r~   ecpairselastpwr   r   r   code0rk   r	  rl   _print_Piecewise  s,   





z!JuliaCodePrinter._print_Piecewisec                   s|      \}}d}|jr.| \}}|jr |jr t| | d}n|jr.|jr.t| | d}|d fdd jD  S )Nr   r   z * c                 3  s     | ]} |t V  qd S r|   rA  rB  rD  rk   rl   r     s    z1JuliaCodePrinter._print_MatMul.<locals>.<genexpr>)as_coeff_mmulr   as_real_imagis_zeror   r   r  r   )rf   r   r   mr)   rO   rN   rk   rD  rl   _print_MatMul  s   zJuliaCodePrinter._print_MatMulc           
        s   t |tr| |d}d|S d}dd dd |D }fdd|D } fd	d|D }g }d
}t|D ]%\}}	|	dv rG||	 q9||| 8 }|d|| |	f  ||| 7 }q9|S )z0Accepts a string of code or a list of code linesTr   z    )z
^function z^if ^elseif ^else$z^for )z^end$rb  rc  c                 S  s   g | ]}| d qS )z 	)lstrip)r   linerk   rk   rl   r     r  z0JuliaCodePrinter.indent_code.<locals>.<listcomp>c                   &   g | ] t t fd dD qS )c                 3      | ]}t | V  qd S r|   r   r   rO   re  rk   rl   r     r
  :JuliaCodePrinter.indent_code.<locals>.<listcomp>.<genexpr>intanyr   )	inc_regexri  rl   r         c                   rf  )c                 3  rg  r|   r   rh  ri  rk   rl   r     r
  rj  rk  rn  )	dec_regexri  rl   r     rp  r   )r   rQ  z%s%s)r   r  r}   
splitlinesr  rW  r   )
rf   code
code_linestabincreasedecreaseprettylevelnre  rk   )rq  ro  rl   r}     s.   




zJuliaCodePrinter.indent_code)7__name__
__module____qualname____doc__printmethodlanguage
_operatorsr_   r
   r\   __annotations__r^   ro   rr   rv   rz   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r  r  r  r  r  _print_Tupler  r  r  r   r+  r/  r<  r>  r?  r@  rE  rF  rG  rN  rP  r\  ra  r}   __classcell__rk   rk   ri   rl   rP   0   sr   
 

J$rP   Nc                 K  s   t || |S )a)  Converts `expr` to a string of Julia code.

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used as the name of the variable to which
        the expression is assigned.  Can be a string, ``Symbol``,
        ``MatrixSymbol``, or ``Indexed`` type.  This can be helpful for
        expressions that generate multi-line statements.
    precision : integer, optional
        The precision for numbers such as pi  [default=16].
    user_functions : dict, optional
        A dictionary where keys are ``FunctionClass`` instances and values are
        their string representations.  Alternatively, the dictionary value can
        be a list of tuples i.e. [(argument_test, cfunction_string)].  See
        below for examples.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols.  If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text).  [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].
    inline: bool, optional
        If True, we try to create single-statement code instead of multiple
        statements.  [default=True].

    Examples
    ========

    >>> from sympy import julia_code, symbols, sin, pi
    >>> x = symbols('x')
    >>> julia_code(sin(x).series(x).removeO())
    'x .^ 5 / 120 - x .^ 3 / 6 + x'

    >>> from sympy import Rational, ceiling
    >>> x, y, tau = symbols("x, y, tau")
    >>> julia_code((2*tau)**Rational(7, 2))
    '8 * sqrt(2) * tau .^ (7 // 2)'

    Note that element-wise (Hadamard) operations are used by default between
    symbols.  This is because its possible in Julia to write "vectorized"
    code.  It is harmless if the values are scalars.

    >>> julia_code(sin(pi*x*y), assign_to="s")
    's = sin(pi * x .* y)'

    If you need a matrix product "*" or matrix power "^", you can specify the
    symbol as a ``MatrixSymbol``.

    >>> from sympy import Symbol, MatrixSymbol
    >>> n = Symbol('n', integer=True, positive=True)
    >>> A = MatrixSymbol('A', n, n)
    >>> julia_code(3*pi*A**3)
    '(3 * pi) * A ^ 3'

    This class uses several rules to decide which symbol to use a product.
    Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
    A HadamardProduct can be used to specify componentwise multiplication ".*"
    of two MatrixSymbols.  There is currently there is no easy way to specify
    scalar symbols, so sometimes the code might have some minor cosmetic
    issues.  For example, suppose x and y are scalars and A is a Matrix, then
    while a human programmer might write "(x^2*y)*A^3", we generate:

    >>> julia_code(x**2*y*A**3)
    '(x .^ 2 .* y) * A ^ 3'

    Matrices are supported using Julia inline notation.  When using
    ``assign_to`` with matrices, the name can be specified either as a string
    or as a ``MatrixSymbol``.  The dimensions must align in the latter case.

    >>> from sympy import Matrix, MatrixSymbol
    >>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
    >>> julia_code(mat, assign_to='A')
    'A = [x .^ 2 sin(x) ceil(x)]'

    ``Piecewise`` expressions are implemented with logical masking by default.
    Alternatively, you can pass "inline=False" to use if-else conditionals.
    Note that if the ``Piecewise`` lacks a default term, represented by
    ``(expr, True)`` then an error will be thrown.  This is to prevent
    generating an expression that may not evaluate to anything.

    >>> from sympy import Piecewise
    >>> pw = Piecewise((x + 1, x > 0), (x, True))
    >>> julia_code(pw, assign_to=tau)
    'tau = ((x > 0) ? (x + 1) : (x))'

    Note that any expression that can be generated normally can also exist
    inside a Matrix:

    >>> mat = Matrix([[x**2, pw, sin(x)]])
    >>> julia_code(mat, assign_to='A')
    'A = [x .^ 2 ((x > 0) ? (x + 1) : (x)) sin(x)]'

    Custom printing can be defined for certain types by passing a dictionary of
    "type" : "function" to the ``user_functions`` kwarg.  Alternatively, the
    dictionary value can be a list of tuples i.e., [(argument_test,
    cfunction_string)].  This can be used to call a custom Julia function.

    >>> from sympy import Function
    >>> f = Function('f')
    >>> g = Function('g')
    >>> custom_functions = {
    ...   "f": "existing_julia_fcn",
    ...   "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
    ...         (lambda x: not x.is_Matrix, "my_fcn")]
    ... }
    >>> mat = Matrix([[1, x]])
    >>> julia_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
    'existing_julia_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'

    Support for loops is provided through ``Indexed`` types. With
    ``contract=True`` these expressions will be turned into loops, whereas
    ``contract=False`` will just print the assignment expression that should be
    looped over:

    >>> from sympy import Eq, IndexedBase, Idx
    >>> len_y = 5
    >>> y = IndexedBase('y', shape=(len_y,))
    >>> t = IndexedBase('t', shape=(len_y,))
    >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
    >>> i = Idx('i', len_y-1)
    >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
    >>> julia_code(e.rhs, assign_to=e.lhs, contract=False)
    'Dy[i] = (y[i + 1] - y[i]) ./ (t[i + 1] - t[i])'
    )rP   doprint)r   	assign_torg   rk   rk   rl   
julia_code   s    r  c                 K  s   t t| fi | dS )z~Prints the Julia representation of the given expression.

    See `julia_code` for the meaning of the optional arguments.
    N)printr  )r   rg   rk   rk   rl   print_julia_code  s   r  r|   )r~  
__future__r   typingr   
sympy.corer   r   r   r   sympy.core.mulr   sympy.core.numbersr	   sympy.printing.codeprinterr
   sympy.printing.precedencer   r   rO   r   ra   rd   rP   r  r  rk   rk   rk   rl   <module>   s2       
S 
