o
    oÇh°	  ã                   @   sD   d dl mZmZmZ d dlmZmZmZmZm	Z	 dd„ Z
dd„ ZdS )é    )ÚSÚpiÚRational)Úassoc_laguerreÚsqrtÚexpÚ	factorialÚ
factorial2c                 C   s¸   t t| |||gƒ\} }}}| d } td| |tddƒ  d| | d   t| d ƒ ttƒtd|  d|  d ƒ  ƒ}|||  t| |d  ƒ t| d |tj	 d| |d  ƒ S )a=  
    Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic
    oscillator.

    Parameters
    ==========

    n :
        The "nodal" quantum number.  Corresponds to the number of nodes in
        the wavefunction.  ``n >= 0``
    l :
        The quantum number for orbital angular momentum.
    nu :
        mass-scaled frequency: nu = m*omega/(2*hbar) where `m` is the mass
        and `omega` the frequency of the oscillator.
        (in atomic units ``nu == omega/2``)
    r :
        Radial coordinate.

    Examples
    ========

    >>> from sympy.physics.sho import R_nl
    >>> from sympy.abc import r, nu, l
    >>> R_nl(0, 0, 1, r)
    2*2**(3/4)*exp(-r**2)/pi**(1/4)
    >>> R_nl(1, 0, 1, r)
    4*2**(1/4)*sqrt(3)*(3/2 - 2*r**2)*exp(-r**2)/(3*pi**(1/4))

    l, nu and r may be symbolic:

    >>> R_nl(0, 0, nu, r)
    2*2**(3/4)*sqrt(nu**(3/2))*exp(-nu*r**2)/pi**(1/4)
    >>> R_nl(0, l, 1, r)
    r**l*sqrt(2**(l + 3/2)*2**(l + 2)/factorial2(2*l + 1))*exp(-r**2)/pi**(1/4)

    The normalization of the radial wavefunction is:

    >>> from sympy import Integral, oo
    >>> Integral(R_nl(0, 0, 1, r)**2*r**2, (r, 0, oo)).n()
    1.00000000000000
    >>> Integral(R_nl(1, 0, 1, r)**2*r**2, (r, 0, oo)).n()
    1.00000000000000
    >>> Integral(R_nl(1, 1, 1, r)**2*r**2, (r, 0, oo)).n()
    1.00000000000000

    é   é   é   )
Úmapr   r   r   r   r   r	   r   r   ÚHalf)ÚnÚlÚnuÚrÚC© r   úe/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/physics/sho.pyÚR_nl   s   00ÿÿ@r   c                 C   s   d|  | t ddƒ | S )aD  
    Returns the Energy of an isotropic harmonic oscillator.

    Parameters
    ==========

    n :
        The "nodal" quantum number.
    l :
        The orbital angular momentum.
    hw :
        The harmonic oscillator parameter.

    Notes
    =====

    The unit of the returned value matches the unit of hw, since the energy is
    calculated as:

        E_nl = (2*n + l + 3/2)*hw

    Examples
    ========

    >>> from sympy.physics.sho import E_nl
    >>> from sympy import symbols
    >>> x, y, z = symbols('x, y, z')
    >>> E_nl(x, y, z)
    z*(2*x + y + 3/2)
    r   r   )r   )r   r   Úhwr   r   r   ÚE_nl@   s   r   N)Ú
sympy.corer   r   r   Úsympy.functionsr   r   r   r   r	   r   r   r   r   r   r   Ú<module>   s    ;