o
    oh!                     @   s   d dl mZ d dlmZmZ d dlmZ d dlmZ d dl	m
Z
mZmZ d dlmZ dd ZdddZdd ZdddZdd ZdS )    )prodgcdgcdextisprime)ZZ)gf_crtgf_crt1gf_crt2as_intc                 C   s   | |d kr| S | | S )zReturn the residual mod m such that it is within half of the modulus.

    >>> from sympy.ntheory.modular import symmetric_residue
    >>> symmetric_residue(1, 6)
    1
    >>> symmetric_residue(4, 6)
    -2
        )amr   r   i/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/ntheory/modular.pysymmetric_residue
   s   	r   FTc                    s   |rt tt| } t tt|}t|| t t| }|rAt fddt|| D sAtt t|| d|d  du r= S  \ }|rNt	t
 |t	|fS t	 t	|fS )ak  Chinese Remainder Theorem.

    The moduli in m are assumed to be pairwise coprime.  The output
    is then an integer f, such that f = v_i mod m_i for each pair out
    of v and m. If ``symmetric`` is False a positive integer will be
    returned, else \|f\| will be less than or equal to the LCM of the
    moduli, and thus f may be negative.

    If the moduli are not co-prime the correct result will be returned
    if/when the test of the result is found to be incorrect. This result
    will be None if there is no solution.

    The keyword ``check`` can be set to False if it is known that the moduli
    are coprime.

    Examples
    ========

    As an example consider a set of residues ``U = [49, 76, 65]``
    and a set of moduli ``M = [99, 97, 95]``. Then we have::

       >>> from sympy.ntheory.modular import crt

       >>> crt([99, 97, 95], [49, 76, 65])
       (639985, 912285)

    This is the correct result because::

       >>> [639985 % m for m in [99, 97, 95]]
       [49, 76, 65]

    If the moduli are not co-prime, you may receive an incorrect result
    if you use ``check=False``:

       >>> crt([12, 6, 17], [3, 4, 2], check=False)
       (954, 1224)
       >>> [954 % m for m in [12, 6, 17]]
       [6, 0, 2]
       >>> crt([12, 6, 17], [3, 4, 2]) is None
       True
       >>> crt([3, 6], [2, 5])
       (5, 6)

    Note: the order of gf_crt's arguments is reversed relative to crt,
    and that solve_congruence takes residue, modulus pairs.

    Programmer's note: rather than checking that all pairs of moduli share
    no GCD (an O(n**2) test) and rather than factoring all moduli and seeing
    that there is no factor in common, a check that the result gives the
    indicated residuals is performed -- an O(n) operation.

    See Also
    ========

    solve_congruence
    sympy.polys.galoistools.gf_crt : low level crt routine used by this routine
    c                 3   s$    | ]\}}||  | kV  qd S Nr   ).0vr   resultr   r   	<genexpr>Z   s   " zcrt.<locals>.<genexpr>F)check	symmetricN)listmapr   r	   r   r   allzipsolve_congruenceintr   )r   r   r   r   mmr   r   r   crt   s    :r#   c                 C   s
   t | tS )aC  First part of Chinese Remainder Theorem, for multiple application.

    Examples
    ========

    >>> from sympy.ntheory.modular import crt, crt1, crt2
    >>> m = [99, 97, 95]
    >>> v = [49, 76, 65]

    The following two codes have the same result.

    >>> crt(m, v)
    (639985, 912285)

    >>> mm, e, s = crt1(m)
    >>> crt2(m, v, mm, e, s)
    (639985, 912285)

    However, it is faster when we want to fix ``m`` and
    compute for multiple ``v``, i.e. the following cases:

    >>> mm, e, s = crt1(m)
    >>> vs = [[52, 21, 37], [19, 46, 76]]
    >>> for v in vs:
    ...     print(crt2(m, v, mm, e, s))
    (397042, 912285)
    (803206, 912285)

    See Also
    ========

    sympy.polys.galoistools.gf_crt1 : low level crt routine used by this routine
    sympy.ntheory.modular.crt
    sympy.ntheory.modular.crt2

    )r
   r   )r   r   r   r   crt1f   s   
&r$   c                 C   s<   t || |||t}|rtt||t|fS t|t|fS )a  Second part of Chinese Remainder Theorem, for multiple application.

    See ``crt1`` for usage.

    Examples
    ========

    >>> from sympy.ntheory.modular import crt1, crt2
    >>> mm, e, s = crt1([18, 42, 6])
    >>> crt2([18, 42, 6], [0, 0, 0], mm, e, s)
    (0, 4536)

    See Also
    ========

    sympy.polys.galoistools.gf_crt2 : low level crt routine used by this routine
    sympy.ntheory.modular.crt
    sympy.ntheory.modular.crt1

    )r   r   r!   r   )r   r   r"   esr   r   r   r   r   crt2   s   r'   c                  O   s  dd }| }| dd}| ddr[dd |D }i }|D ]\}}||; }||v r3||| kr2 d	S q|||< qd
d | D }~tdd |D r[tt| \}}t|||ddS d}|D ]}	|||	}|d	u rm d	S |\}
}|
| }
q_|rt|
||fS |
|fS )a  Compute the integer ``n`` that has the residual ``ai`` when it is
    divided by ``mi`` where the ``ai`` and ``mi`` are given as pairs to
    this function: ((a1, m1), (a2, m2), ...). If there is no solution,
    return None. Otherwise return ``n`` and its modulus.

    The ``mi`` values need not be co-prime. If it is known that the moduli are
    not co-prime then the hint ``check`` can be set to False (default=True) and
    the check for a quicker solution via crt() (valid when the moduli are
    co-prime) will be skipped.

    If the hint ``symmetric`` is True (default is False), the value of ``n``
    will be within 1/2 of the modulus, possibly negative.

    Examples
    ========

    >>> from sympy.ntheory.modular import solve_congruence

    What number is 2 mod 3, 3 mod 5 and 2 mod 7?

    >>> solve_congruence((2, 3), (3, 5), (2, 7))
    (23, 105)
    >>> [23 % m for m in [3, 5, 7]]
    [2, 3, 2]

    If you prefer to work with all remainder in one list and
    all moduli in another, send the arguments like this:

    >>> solve_congruence(*zip((2, 3, 2), (3, 5, 7)))
    (23, 105)

    The moduli need not be co-prime; in this case there may or
    may not be a solution:

    >>> solve_congruence((2, 3), (4, 6)) is None
    True

    >>> solve_congruence((2, 3), (5, 6))
    (5, 6)

    The symmetric flag will make the result be within 1/2 of the modulus:

    >>> solve_congruence((2, 3), (5, 6), symmetric=True)
    (-1, 6)

    See Also
    ========

    crt : high level routine implementing the Chinese Remainder Theorem

    c                    s   | \}}|\}}||| |}}}t |||  fdd|||fD \}}}|dkr=t||\ }	}
 dkr9dS ||	9 }|||  || }}||fS )zReturn the tuple (a, m) which satisfies the requirement
        that n = a + i*m satisfy n = a1 + j*m1 and n = a2 = k*m2.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Method_of_successive_substitution
        c                    s   g | ]}|  qS r   r   )r   igr   r   
<listcomp>   s    z5solve_congruence.<locals>.combine.<locals>.<listcomp>   Nr   )c1c2a1m1a2m2r   bcinv_a_r   r   r)   r   combine   s   	z!solve_congruence.<locals>.combiner   Fr   Tc                 S   s    g | ]\}}t |t |fqS r   r   r   rr   r   r   r   r+      s     z$solve_congruence.<locals>.<listcomp>Nc                 S   s   g | ]\}}||fqS r   r   )r   r   r9   r   r   r   r+     s    c                 s   s    | ]	\}}t |V  qd S r   r   r8   r   r   r   r     s    z#solve_congruence.<locals>.<genexpr>)r   r   )r   r,   )getitemsr   r   r   r#   r   )remainder_modulus_pairshintr7   rmr   uniqr9   r   rvrminr   r   r   r       s8   4


r    N)FT)F)mathr   sympy.external.gmpyr   r   sympy.ntheory.primetestr   sympy.polys.domainsr   sympy.polys.galoistoolsr	   r
   r   sympy.utilities.miscr   r   r#   r$   r'   r    r   r   r   r   <module>   s    
N
)