o
    ohv                     @   s  d dl Z d dlmZ d dlmZ d dlmZ d dlmZ d dl	m
Z
mZ d dlmZ d dlmZ d d	lmZ d
dlmZ d
dlmZmZ d
dlmZ d
dlmZmZ d
dlmZmZ ddgiZdd Z G dd deZ!dd Z"G dd de!eZ#e# Z$Z%e&fddZ'e&fddZ(dNdd Z)d!d" Z*d#d$ Z+d%d& Z,d'd( Z-d)d* Z.d+d, Z/ed-d.d/d0 Z0dOd2d3Z1d4d5 Z2d1d6d7d8d9Z3dPd:d;Z4dQd=d>Z5d?d@ Z6dAdB Z7dCdD Z8	6	dRdGdHZ9dSdJdKZ:dLdM Z;dS )T    N)Basic)S)Symbolsympify)cossin)doctest_depends_on)sympy_deprecation_warning)is_sequence   )
ShapeError)	_cholesky_LDLdecomposition)
MatrixBase)MutableRepMatrix	RepMatrix)_lower_triangular_solve_upper_triangular_solve)symarraynumpyc                 C   s   | j S )zReturns True if x is zero.)is_zero)x r   h/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/matrices/dense.py_iszero   s   r   c                   @   s   e Zd ZdZdZdZdZedd Zdd Z	d	d
 Z
dd ZdddZdddZdd Zdd Zeje_eje_eje_eje_dS )DenseMatrixzJMatrix implementation based on DomainMatrix as the internal representationFgQ$@   c                 C   s   t dddd |  S )Nzy
            The private _mat attribute of Matrix is deprecated. Use the
            .flat() method instead.
            z1.9z$deprecated-private-matrix-attributes)deprecated_since_versionactive_deprecations_target)r
   flatselfr   r   r   _mat)   s   	zDenseMatrix._matc                 K   s(   | j |dd|dt|dddS )NmethodGE
iszerofunctry_block_diagF)r$   r&   r'   )invgetr   )r"   kwargsr   r   r   _eval_inverse6   s   

zDenseMatrix._eval_inversec                 C   s   ddl m} || j S )z4Returns an Immutable version of this Matrix
        r   )ImmutableDenseMatrix)	immutabler,   _fromrep_repcopy)r"   clsr   r   r   as_immutable;   s   zDenseMatrix.as_immutablec                 C   s   t | S )aB  Returns a mutable version of this matrix

        Examples
        ========

        >>> from sympy import ImmutableMatrix
        >>> X = ImmutableMatrix([[1, 2], [3, 4]])
        >>> Y = X.as_mutable()
        >>> Y[1, 1] = 5 # Can set values in Y
        >>> Y
        Matrix([
        [1, 2],
        [3, 5]])
        )Matrixr!   r   r   r   
as_mutableA   s   zDenseMatrix.as_mutableTc                 C      t | |dS N)	hermitian)r   r"   r7   r   r   r   choleskyR      zDenseMatrix.choleskyc                 C   r5   r6   )r   r8   r   r   r   LDLdecompositionU   r:   zDenseMatrix.LDLdecompositionc                 C   
   t | |S N)r   r"   rhsr   r   r   lower_triangular_solveX      
z"DenseMatrix.lower_triangular_solvec                 C   r<   r=   )r   r>   r   r   r   upper_triangular_solve[   rA   z"DenseMatrix.upper_triangular_solveNT)__name__
__module____qualname____doc__is_MatrixExpr_op_priority_class_prioritypropertyr#   r+   r2   r4   r9   r;   r@   rB   r   r   r   r   r   r   r   r   r      s$    


r   c                 C   sV   t | ddr
|  S t| tr| S t| dr)|  }t|jdkr%t|S t	| S | S )z0Return a matrix as a Matrix, otherwise return x.	is_MatrixF	__array__r   )
getattrr4   
isinstancer   hasattrrM   lenshaper   r3   )r   ar   r   r   _force_mutabled   s   

rT   c                   @   s   e Zd Zdd ZdS )MutableDenseMatrixc                 K   sB   ddl m} |   D ]\\}}}||fi || ||f< qdS )zApplies simplify to the elements of a matrix in place.

        This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))

        See Also
        ========

        sympy.simplify.simplify.simplify
        r   )simplifyN)sympy.simplify.simplifyrV   todokitems)r"   r*   	_simplifyijelementr   r   r   rV   t   s   
zMutableDenseMatrix.simplifyN)rD   rE   rF   rV   r   r   r   r   rU   r   s    rU   c                 C   s8   ddl m} |t| |}t| D ]\}}|||< q|S )zmConverts Python list of SymPy expressions to a NumPy array.

    See Also
    ========

    matrix2numpy
    r   empty)r   r_   rQ   	enumerate)ldtyper_   rS   r[   sr   r   r   
list2numpy   s
   
rd   c                 C   sP   ddl m} || j|}t| jD ]}t| jD ]}| ||f |||f< qq|S )zYConverts SymPy's matrix to a NumPy array.

    See Also
    ========

    list2numpy
    r   r^   )r   r_   rR   rangerowscols)mrb   r_   rS   r[   r\   r   r   r   matrix2numpy   s   ri      c                 C   s   t |tr	|dk rtd|| |krtd| || |fD ]}t |tr1|dk s1||d kr<td|d | |q t|}t|}t|}t|}||| | f< ||||f< ||| |f< | ||| f< |S )a  Returns a a Givens rotation matrix, a a rotation in the
    plane spanned by two coordinates axes.

    Explanation
    ===========

    The Givens rotation corresponds to a generalization of rotation
    matrices to any number of dimensions, given by:

    .. math::
        G(i, j, \theta) =
            \begin{bmatrix}
                1   & \cdots &    0   & \cdots &    0   & \cdots &    0   \\
                \vdots & \ddots & \vdots &        & \vdots &        & \vdots \\
                0   & \cdots &    c   & \cdots &   -s   & \cdots &    0   \\
                \vdots &        & \vdots & \ddots & \vdots &        & \vdots \\
                0   & \cdots &    s   & \cdots &    c   & \cdots &    0   \\
                \vdots &        & \vdots &        & \vdots & \ddots & \vdots \\
                0   & \cdots &    0   & \cdots &    0   & \cdots &    1
            \end{bmatrix}

    Where $c = \cos(\theta)$ and $s = \sin(\theta)$ appear at the intersections
    ``i``\th and ``j``\th rows and columns.

    For fixed ``i > j``\, the non-zero elements of a Givens matrix are
    given by:

    - $g_{kk} = 1$ for $k \ne i,\,j$
    - $g_{kk} = c$ for $k = i,\,j$
    - $g_{ji} = -g_{ij} = -s$

    Parameters
    ==========

    i : int between ``0`` and ``dim - 1``
        Represents first axis
    j : int between ``0`` and ``dim - 1``
        Represents second axis
    dim : int bigger than 1
        Number of dimentions. Defaults to 3.

    Examples
    ========

    >>> from sympy import pi, rot_givens

    A counterclockwise rotation of pi/3 (60 degrees) around
    the third axis (z-axis):

    >>> rot_givens(1, 0, pi/3)
    Matrix([
    [      1/2, -sqrt(3)/2, 0],
    [sqrt(3)/2,        1/2, 0],
    [        0,          0, 1]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_givens(1, 0, pi/2)
    Matrix([
    [0, -1, 0],
    [1,  0, 0],
    [0,  0, 1]])

    This can be generalized to any number
    of dimensions:

    >>> rot_givens(1, 0, pi/2, dim=4)
    Matrix([
    [0, -1, 0, 0],
    [1,  0, 0, 0],
    [0,  0, 1, 0],
    [0,  0, 0, 1]])

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Givens_rotation

    See Also
    ========

    rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (clockwise around the x axis)
    rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (clockwise around the y axis)
    rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (clockwise around the z axis)
    rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (counterclockwise around the x axis)
    rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (counterclockwise around the y axis)
    rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (counterclockwise around the z axis)
       z/dim must be an integer biggen than one, got {}.z'i and j must be different, got ({}, {})r   r   z=i and j must be integers between 0 and {}, got i={} and j={}.)rO   int
ValueErrorformatr   r   r   eye)r[   r\   thetadimijcrc   Mr   r   r   
rot_givens   s.   _ru   c                 C      t dd| ddS )az  Returns a rotation matrix for a rotation of theta (in radians)
    about the 3-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    clockwise rotation around the `z`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                 \cos(\theta) & \sin(\theta) & 0 \\
                -\sin(\theta) & \cos(\theta) & 0 \\
                            0 &            0 & 1
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_axis3

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_axis3(theta)
    Matrix([
    [       1/2, sqrt(3)/2, 0],
    [-sqrt(3)/2,       1/2, 0],
    [         0,         0, 1]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_axis3(pi/2)
    Matrix([
    [ 0, 1, 0],
    [-1, 0, 0],
    [ 0, 0, 1]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (counterclockwise around the z axis)
    rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (clockwise around the x axis)
    rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (clockwise around the y axis)
    r   r   rj   rq   ru   rp   r   r   r   	rot_axis3'     4rz   c                 C   rv   )a  Returns a rotation matrix for a rotation of theta (in radians)
    about the 2-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    clockwise rotation around the `y`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                \cos(\theta) & 0 & -\sin(\theta) \\
                           0 & 1 &             0 \\
                \sin(\theta) & 0 &  \cos(\theta)
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_axis2

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_axis2(theta)
    Matrix([
    [      1/2, 0, -sqrt(3)/2],
    [        0, 1,          0],
    [sqrt(3)/2, 0,        1/2]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_axis2(pi/2)
    Matrix([
    [0, 0, -1],
    [0, 1,  0],
    [1, 0,  0]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (clockwise around the y axis)
    rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (counterclockwise around the x axis)
    rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (counterclockwise around the z axis)
    rk   r   rj   rw   rx   ry   r   r   r   	rot_axis2^  r{   r|   c                 C   rv   )az  Returns a rotation matrix for a rotation of theta (in radians)
    about the 1-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    clockwise rotation around the `x`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                1 &             0 &            0 \\
                0 &  \cos(\theta) & \sin(\theta) \\
                0 & -\sin(\theta) & \cos(\theta)
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_axis1

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_axis1(theta)
    Matrix([
    [1,          0,         0],
    [0,        1/2, sqrt(3)/2],
    [0, -sqrt(3)/2,       1/2]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_axis1(pi/2)
    Matrix([
    [1,  0, 0],
    [0,  0, 1],
    [0, -1, 0]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (counterclockwise around the x axis)
    rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (clockwise around the y axis)
    rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (clockwise around the z axis)
    r   rk   rj   rw   rx   ry   r   r   r   	rot_axis1  r{   r}   c                 C   rv   )a  Returns a rotation matrix for a rotation of theta (in radians)
    about the 3-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    counterclockwise rotation around the `z`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                \cos(\theta) & -\sin(\theta) & 0 \\
                \sin(\theta) &  \cos(\theta) & 0 \\
                           0 &             0 & 1
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_ccw_axis3

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_ccw_axis3(theta)
    Matrix([
    [      1/2, -sqrt(3)/2, 0],
    [sqrt(3)/2,        1/2, 0],
    [        0,          0, 1]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_ccw_axis3(pi/2)
    Matrix([
    [0, -1, 0],
    [1,  0, 0],
    [0,  0, 1]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (clockwise around the z axis)
    rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (counterclockwise around the x axis)
    rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (counterclockwise around the y axis)
    r   r   rj   rw   rx   ry   r   r   r   rot_ccw_axis3  r{   r~   c                 C   rv   )a  Returns a rotation matrix for a rotation of theta (in radians)
    about the 2-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    counterclockwise rotation around the `y`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                 \cos(\theta) & 0 & \sin(\theta) \\
                            0 & 1 &            0 \\
                -\sin(\theta) & 0 & \cos(\theta)
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_ccw_axis2

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_ccw_axis2(theta)
    Matrix([
    [       1/2, 0, sqrt(3)/2],
    [         0, 1,         0],
    [-sqrt(3)/2, 0,       1/2]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_ccw_axis2(pi/2)
    Matrix([
    [ 0,  0,  1],
    [ 0,  1,  0],
    [-1,  0,  0]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (clockwise around the y axis)
    rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (counterclockwise around the x axis)
    rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (counterclockwise around the z axis)
    r   rk   rj   rw   rx   ry   r   r   r   rot_ccw_axis2  r{   r   c                 C   rv   )a  Returns a rotation matrix for a rotation of theta (in radians)
    about the 1-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    counterclockwise rotation around the `x`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                1 &            0 &             0 \\
                0 & \cos(\theta) & -\sin(\theta) \\
                0 & \sin(\theta) &  \cos(\theta)
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_ccw_axis1

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_ccw_axis1(theta)
    Matrix([
    [1,         0,          0],
    [0,       1/2, -sqrt(3)/2],
    [0, sqrt(3)/2,        1/2]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_ccw_axis1(pi/2)
    Matrix([
    [1, 0,  0],
    [0, 0, -1],
    [0, 1,  0]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (clockwise around the x axis)
    rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (counterclockwise around the y axis)
    rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (counterclockwise around the z axis)
    rk   r   rj   rw   rx   ry   r   r   r   rot_ccw_axis1:  r{   r   )r   )modulesc              	   K   sV   ddl m}m} ||td}||D ]}td| dtt|f fi |||< q|S )aI  Create a numpy ndarray of symbols (as an object array).

    The created symbols are named ``prefix_i1_i2_``...  You should thus provide a
    non-empty prefix if you want your symbols to be unique for different output
    arrays, as SymPy symbols with identical names are the same object.

    Parameters
    ----------

    prefix : string
      A prefix prepended to the name of every symbol.

    shape : int or tuple
      Shape of the created array.  If an int, the array is one-dimensional; for
      more than one dimension the shape must be a tuple.

    \*\*kwargs : dict
      keyword arguments passed on to Symbol

    Examples
    ========
    These doctests require numpy.

    >>> from sympy import symarray
    >>> symarray('', 3)
    [_0 _1 _2]

    If you want multiple symarrays to contain distinct symbols, you *must*
    provide unique prefixes:

    >>> a = symarray('', 3)
    >>> b = symarray('', 3)
    >>> a[0] == b[0]
    True
    >>> a = symarray('a', 3)
    >>> b = symarray('b', 3)
    >>> a[0] == b[0]
    False

    Creating symarrays with a prefix:

    >>> symarray('a', 3)
    [a_0 a_1 a_2]

    For more than one dimension, the shape must be given as a tuple:

    >>> symarray('a', (2, 3))
    [[a_0_0 a_0_1 a_0_2]
     [a_1_0 a_1_1 a_1_2]]
    >>> symarray('a', (2, 3, 2))
    [[[a_0_0_0 a_0_0_1]
      [a_0_1_0 a_0_1_1]
      [a_0_2_0 a_0_2_1]]
    <BLANKLINE>
     [[a_1_0_0 a_1_0_1]
      [a_1_1_0 a_1_1_1]
      [a_1_2_0 a_1_2_1]]]

    For setting assumptions of the underlying Symbols:

    >>> [s.is_real for s in symarray('a', 2, real=True)]
    [True, True]
    r   )r_   ndindex)rb   z%s_%s_)r   r_   r   objectr   joinmapstr)prefixrR   r*   r_   r   arrindexr   r   r   r   q  s   Ar   Tc                    sH   t tt|s fdd}n fdd}t}t||| S )aY  Given linear difference operator L of order 'k' and homogeneous
       equation Ly = 0 we want to compute kernel of L, which is a set
       of 'k' sequences: a(n), b(n), ... z(n).

       Solutions of L are linearly independent iff their Casoratian,
       denoted as C(a, b, ..., z), do not vanish for n = 0.

       Casoratian is defined by k x k determinant::

                  +  a(n)     b(n)     . . . z(n)     +
                  |  a(n+1)   b(n+1)   . . . z(n+1)   |
                  |    .         .     .        .     |
                  |    .         .       .      .     |
                  |    .         .         .    .     |
                  +  a(n+k-1) b(n+k-1) . . . z(n+k-1) +

       It proves very useful in rsolve_hyper() where it is applied
       to a generating set of a recurrence to factor out linearly
       dependent solutions and return a basis:

       >>> from sympy import Symbol, casoratian, factorial
       >>> n = Symbol('n', integer=True)

       Exponential and factorial are linearly independent:

       >>> casoratian([2**n, factorial(n)], n) != 0
       True

    c                    s   |    |  S r=   subsr[   r\   nseqsr   r   <lambda>      zcasoratian.<locals>.<lambda>c                    s   |   | S r=   r   r   r   r   r   r         )listr   r   rQ   r3   det)r   r   zerofkr   r   r   
casoratian  s   r   c                  O   s   t j| i |S )z`Create square identity matrix n x n

    See Also
    ========

    diag
    zeros
    ones
    )r3   ro   argsr*   r   r   r   ro     s   ro   Fstrictunpackc                 O   s   t j|| |d|S )aK  Returns a matrix with the provided values placed on the
    diagonal. If non-square matrices are included, they will
    produce a block-diagonal matrix.

    Examples
    ========

    This version of diag is a thin wrapper to Matrix.diag that differs
    in that it treats all lists like matrices -- even when a single list
    is given. If this is not desired, either put a `*` before the list or
    set `unpack=True`.

    >>> from sympy import diag

    >>> diag([1, 2, 3], unpack=True)  # = diag(1,2,3) or diag(*[1,2,3])
    Matrix([
    [1, 0, 0],
    [0, 2, 0],
    [0, 0, 3]])

    >>> diag([1, 2, 3])  # a column vector
    Matrix([
    [1],
    [2],
    [3]])

    See Also
    ========
    .matrixbase.MatrixBase.eye
    .matrixbase.MatrixBase.diagonal
    .matrixbase.MatrixBase.diag
    .expressions.blockmatrix.BlockMatrix
    r   )r3   diag)r   r   valuesr*   r   r   r   r     s   "r   c                 C   s   t j| |ddS )a  Apply the Gram-Schmidt process to a set of vectors.

    Parameters
    ==========

    vlist : List of Matrix
        Vectors to be orthogonalized for.

    orthonormal : Bool, optional
        If true, return an orthonormal basis.

    Returns
    =======

    vlist : List of Matrix
        Orthogonalized vectors

    Notes
    =====

    This routine is mostly duplicate from ``Matrix.orthogonalize``,
    except for some difference that this always raises error when
    linearly dependent vectors are found, and the keyword ``normalize``
    has been named as ``orthonormal`` in this function.

    See Also
    ========

    .matrixbase.MatrixBase.orthogonalize

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
    T)	normalize	rankcheck)rU   orthogonalize)vlistorthonormalr   r   r   GramSchmidt  s   $r   r   c                 C   s\  t |trd|jvrtd|jdkr|j}| d }t|r+t|}|s*tdnt	dt
| ds:t	d|  t|}|| }t|}t|D ]#\}}t
|dsYt	d|  t|D ]}	|||	 |||	| f< q]qJt|D ]}	t|	|D ]}
| ||	 ||
 ||	| |
| f< qyqrt|D ]}	t|	d |D ]}
||	|
f ||
|	f< qq|S )a
  Compute Hessian matrix for a function f wrt parameters in varlist
    which may be given as a sequence or a row/column vector. A list of
    constraints may optionally be given.

    Examples
    ========

    >>> from sympy import Function, hessian, pprint
    >>> from sympy.abc import x, y
    >>> f = Function('f')(x, y)
    >>> g1 = Function('g')(x, y)
    >>> g2 = x**2 + 3*y
    >>> pprint(hessian(f, (x, y), [g1, g2]))
    [                   d               d            ]
    [     0        0    --(g(x, y))     --(g(x, y))  ]
    [                   dx              dy           ]
    [                                                ]
    [     0        0        2*x              3       ]
    [                                                ]
    [                     2               2          ]
    [d                   d               d           ]
    [--(g(x, y))  2*x   ---(f(x, y))   -----(f(x, y))]
    [dx                   2            dy dx         ]
    [                   dx                           ]
    [                                                ]
    [                     2               2          ]
    [d                   d               d           ]
    [--(g(x, y))   3   -----(f(x, y))   ---(f(x, y)) ]
    [dy                dy dx              2          ]
    [                                   dy           ]

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Hessian_matrix

    See Also
    ========

    sympy.matrices.matrixbase.MatrixBase.jacobian
    wronskian
    r   z)`varlist` must be a column or row vector.r   z `len(varlist)` must not be zero.z*Improper variable list in hessian functiondiffz'Function `f` (%s) is not differentiable)rO   r   rR   r   rg   Ttolistr   rQ   rm   rN   zerosr`   re   r   )r   varlistconstraintsr   rh   Noutr   gr[   r\   r   r   r   hessianE  s@   
,



*r   c                 C   s   t j|| dS )z
    Create a Jordan block:

    Examples
    ========

    >>> from sympy import jordan_cell
    >>> from sympy.abc import x
    >>> jordan_cell(x, 4)
    Matrix([
    [x, 1, 0, 0],
    [0, x, 1, 0],
    [0, 0, x, 1],
    [0, 0, 0, x]])
    )size
eigenvalue)r3   jordan_block)eigenvalr   r   r   r   jordan_cell  s   r   c                 C   s
   |  |S )a  Return the Hadamard product (elementwise product) of A and B

    >>> from sympy import Matrix, matrix_multiply_elementwise
    >>> A = Matrix([[0, 1, 2], [3, 4, 5]])
    >>> B = Matrix([[1, 10, 100], [100, 10, 1]])
    >>> matrix_multiply_elementwise(A, B)
    Matrix([
    [  0, 10, 200],
    [300, 40,   5]])

    See Also
    ========

    sympy.matrices.matrixbase.MatrixBase.__mul__
    )multiply_elementwise)ABr   r   r   matrix_multiply_elementwise  s   
r   c                  O   &   d|v r| d|d< tj| i |S )zReturns a matrix of ones with ``rows`` rows and ``cols`` columns;
    if ``cols`` is omitted a square matrix will be returned.

    See Also
    ========

    zeros
    eye
    diag
    rs   rg   )popr3   onesr   r   r   r   r        r   c   d   c                 C   s   |pt |}|du r| }|r| |krtd| |f t| | }|dkr3||tt|| d }t| |}	|sR|D ]}
t|
|\}}|	|||	||f< q<|	S |D ]}
t|
|\}}||krq|	|| |	||f< |	||f< qT|	S )a  Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
    the matrix will be square. If ``symmetric`` is True the matrix must be
    square. If ``percent`` is less than 100 then only approximately the given
    percentage of elements will be non-zero.

    The pseudo-random number generator used to generate matrix is chosen in the
    following way.

    * If ``prng`` is supplied, it will be used as random number generator.
      It should be an instance of ``random.Random``, or at least have
      ``randint`` and ``shuffle`` methods with same signatures.
    * if ``prng`` is not supplied but ``seed`` is supplied, then new
      ``random.Random`` with given ``seed`` will be created;
    * otherwise, a new ``random.Random`` with default seed will be used.

    Examples
    ========

    >>> from sympy import randMatrix
    >>> randMatrix(3) # doctest:+SKIP
    [25, 45, 27]
    [44, 54,  9]
    [23, 96, 46]
    >>> randMatrix(3, 2) # doctest:+SKIP
    [87, 29]
    [23, 37]
    [90, 26]
    >>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
    [0, 2, 0]
    [2, 0, 1]
    [0, 0, 1]
    >>> randMatrix(3, symmetric=True) # doctest:+SKIP
    [85, 26, 29]
    [26, 71, 43]
    [29, 43, 57]
    >>> A = randMatrix(3, seed=1)
    >>> B = randMatrix(3, seed=2)
    >>> A == B
    False
    >>> A == randMatrix(3, seed=1)
    True
    >>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
    [77, 70,  0],
    [70,  0,  0],
    [ 0,  0, 88]
    Nz4For symmetric matrices, r must equal c, but %i != %ir   )
randomRandomrm   re   samplerl   rQ   r   divmodrandint)rrs   minmaxseed	symmetricpercentprngrr   rh   ijkr[   r\   r   r   r   
randMatrix  s(   1
 r   bareissc                    sD   dd  D  t  }|dkrtjS t|| fdd}||S )av  
    Compute Wronskian for [] of functions

    ::

                         | f1       f2        ...   fn      |
                         | f1'      f2'       ...   fn'     |
                         |  .        .        .      .      |
        W(f1, ..., fn) = |  .        .         .     .      |
                         |  .        .          .    .      |
                         |  (n)      (n)            (n)     |
                         | D   (f1) D   (f2)  ...  D   (fn) |

    see: https://en.wikipedia.org/wiki/Wronskian

    See Also
    ========

    sympy.matrices.matrixbase.MatrixBase.jacobian
    hessian
    c                 S   s   g | ]}t |qS r   r   ).0r   r   r   r   
<listcomp>.  r   zwronskian.<locals>.<listcomp>r   c                    s    |   |S r=   )r   r   	functionsvarr   r   r   2  r   zwronskian.<locals>.<lambda>)rQ   r   Oner3   r   )r   r   r$   r   Wr   r   r   	wronskian  s   
r   c                  O   r   )zReturns a matrix of zeros with ``rows`` rows and ``cols`` columns;
    if ``cols`` is omitted a square matrix will be returned.

    See Also
    ========

    ones
    eye
    diag
    rs   rg   )r   r3   r   r   r   r   r   r   6  r   r   )rj   rC   )F)r   )Nr   r   NFr   N)r   )<r   sympy.core.basicr   sympy.core.singletonr   sympy.core.symbolr   sympy.core.sympifyr   (sympy.functions.elementary.trigonometricr   r   sympy.utilities.decoratorr	   sympy.utilities.exceptionsr
   sympy.utilities.iterablesr   
exceptionsr   decompositionsr   r   
matrixbaser   	repmatrixr   r   solversr   r   __doctest_requires__r   r   rT   rU   MutableMatrixr3   r   rd   ri   ru   rz   r|   r}   r~   r   r   r   r   ro   r   r   r   r   r   r   r   r   r   r   r   r   r   <module>   sX    
I
w777777

L+
%
)M

L