o
    oh                  
   @   s   d dl mZ d dlmZ d dlmZmZ d dlmZm	Z	 d dl
mZ d dlmZmZ d dlmZ d dlmZmZmZmZmZmZmZmZmZmZmZmZmZ d d	lm Z  	 ddddddd ddddddZ!dd Z"dde fddddZ#dS )    )Tuple)oo)GtLt)DummySymbol)Abs)MinMax)And)
AssignmentAddAugmentedAssignmentbreak_	CodeBlockDeclarationFunctionDefinitionPrintReturnScopeWhileVariablePointerreal)isnan-q=NgؗҼ<Fc                 C   s   |  |  | S N)diff)ex r   l/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/codegen/algorithms.py<lambda>   s    r!   )rtoldebugitermaxcounterdelta_fncse
handle_nanboundsc                C   s  |du rt  }t}d}ndd }|j}|| |}|	r:ddlm}	 |	| g\}\}dd |D }|t||g7 }nt||g}|
durQ|tt|t	|
t
g7 }|t||g7 }|duro|t|tt||d |d	 g7 }|rt||gd
|j|}||g7 }tt|||t|  }tt|ttdg}|dur|pt dd}t|d}|t| |t|d	 t|t||}t|t	| }|}|r|t|gd|j ||g7 }|t	| S )a   Generates an AST for Newton-Raphson method (a root-finding algorithm).

    Explanation
    ===========

    Returns an abstract syntax tree (AST) based on ``sympy.codegen.ast`` for Netwon's
    method of root-finding.

    Parameters
    ==========

    expr : expression
    wrt : Symbol
        With respect to, i.e. what is the variable.
    atol : number or expression
        Absolute tolerance (stopping criterion)
    rtol : number or expression
        Relative tolerance (stopping criterion)
    delta : Symbol
        Will be a ``Dummy`` if ``None``.
    debug : bool
        Whether to print convergence information during iterations
    itermax : number or expr
        Maximum number of iterations.
    counter : Symbol
        Will be a ``Dummy`` if ``None``.
    delta_fn: Callable[[Expr, Symbol], Expr]
        computes the step, default is newtons method. For e.g. Halley's method
        use delta_fn=lambda e, x: -2*e*e.diff(x)/(2*e.diff(x)**2 - e*e.diff(x, 2))
    cse: bool
        Perform common sub-expression elimination on delta expression
    handle_nan: Token
        How to handle occurrence of not-a-number (NaN).
    bounds: Optional[tuple[Expr, Expr]]
        Perform optimization within bounds

    Examples
    ========

    >>> from sympy import symbols, cos
    >>> from sympy.codegen.ast import Assignment
    >>> from sympy.codegen.algorithms import newtons_method
    >>> x, dx, atol = symbols('x dx atol')
    >>> expr = cos(x) - x**3
    >>> algo = newtons_method(expr, x, atol=atol, delta=dx)
    >>> algo.has(Assignment(dx, -expr/expr.diff(x)))
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Newton%27s_method

    Ndeltac                 S   s   | S r   r   )r   r   r   r    r!   P   s    z newtons_method.<locals>.<lambda>r   )r'   c                 S   s   g | ]	\}}t ||qS r   )r   ).0dumsub_er   r   r    
<listcomp>W   s    z"newtons_method.<locals>.<listcomp>   z{}=%12.5g {}=%12.5g\n)typevalueT)integerz{}=%12.5g\n)r   r   namesympy.simplify.cse_mainr'   factorr   r   r   r   r   r   r	   r
   r   formatr   r   r   r   r   r   deducedappendr   r   )exprwrtatolr*   r"   r#   r$   r%   r&   r'   r(   r)   Wrappername_d
delta_exprcsesredwhl_bdyprntreqdeclars	v_counterwhlblckr   r   r    newtons_method   sF   ;
$

rH   c                 C   s*   t | tr| jj} | S t | tr| j} | S r   )
isinstancer   variablesymbolr   )argr   r   r    
_symbol_ofs   s   

rM   newton)r*   c                K   s   |du r|f}dd |D }|du r t d|j }| |r d}t| |fd|i||}t|tr6|j}| j	dd |D }	|	rOt
dd	tt|	 td
d |D }
t|t|}tt||
||dS )a   Generates an AST for a function implementing the Newton-Raphson method.

    Parameters
    ==========

    expr : expression
    wrt : Symbol
        With respect to, i.e. what is the variable
    params : iterable of symbols
        Symbols appearing in expr that are taken as constants during the iterations
        (these will be accepted as parameters to the generated function).
    func_name : str
        Name of the generated function.
    attrs : Tuple
        Attribute instances passed as ``attrs`` to ``FunctionDefinition``.
    \*\*kwargs :
        Keyword arguments passed to :func:`sympy.codegen.algorithms.newtons_method`.

    Examples
    ========

    >>> from sympy import symbols, cos
    >>> from sympy.codegen.algorithms import newtons_method_function
    >>> from sympy.codegen.pyutils import render_as_module
    >>> x = symbols('x')
    >>> expr = cos(x) - x**3
    >>> func = newtons_method_function(expr, x)
    >>> py_mod = render_as_module(func)  # source code as string
    >>> namespace = {}
    >>> exec(py_mod, namespace, namespace)
    >>> res = eval('newton(0.5)', namespace)
    >>> abs(res - 0.865474033102) < 1e-12
    True

    See Also
    ========

    sympy.codegen.algorithms.newtons_method

    Nc                 S   s*   i | ]}t |tr|jtd |jj qS )z(*%s))rI   r   rK   r   r3   r+   pr   r   r    
<dictcomp>   s    
z+newtons_method_function.<locals>.<dictcomp>d_r*   c                 S   s   h | ]}t |qS r   )rM   rO   r   r   r    	<setcomp>   s    z*newtons_method_function.<locals>.<setcomp>zMissing symbols in params: %sz, c                 s   s    | ]}t |tV  qd S r   )r   r   rO   r   r   r    	<genexpr>   s    z*newtons_method_function.<locals>.<genexpr>)attrs)r   r3   hasrH   xreplacerI   r   bodyfree_symbols
difference
ValueErrorjoinmapstrtupler   r   r   r   )r9   r:   params	func_namerU   r*   kwargspointer_subsalgonot_in_paramsrD   rX   r   r   r    newtons_method_function{   s$   )

rf   )r   N)$sympy.core.containersr   sympy.core.numbersr   sympy.core.relationalr   r   sympy.core.symbolr   r   $sympy.functions.elementary.complexesr   (sympy.functions.elementary.miscellaneousr	   r
   sympy.logic.boolalgr   sympy.codegen.astr   r   r   r   r   r   r   r   r   r   r   r   r   sympy.codegen.cfunctionsr   rH   rM   rf   r   r   r   r    <module>   s"    <
c