o
    ohl                     @   sn   d Z ddlmZ ddlmZmZmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ ddlmZ dd
dZdS )zX
This module implements a method to find
Euler-Lagrange Equations for given Lagrangian.
    )combinations_with_replacement)
DerivativeFunctiondiff)Eq)S)Symbolsympify)iterable c           
   
      sp  t  rt n f  st| t n D ]}t|ts$td| qt |r-t|n|f}|s8 d j}n	tdd |D }tdd |D sPtd|  D ]}||jksatd||f qRt	 fdd	| t
D dg }g } D ]>}t| |}td
|d
 D ] }t||D ]}|tj| t| t|g|R  g|R    }qqt|d}	t|	tr||	 qw|S )a5  
    Find the Euler-Lagrange equations [1]_ for a given Lagrangian.

    Parameters
    ==========

    L : Expr
        The Lagrangian that should be a function of the functions listed
        in the second argument and their derivatives.

        For example, in the case of two functions $f(x,y)$, $g(x,y)$ and
        two independent variables $x$, $y$ the Lagrangian has the form:

            .. math:: L\left(f(x,y),g(x,y),\frac{\partial f(x,y)}{\partial x},
                      \frac{\partial f(x,y)}{\partial y},
                      \frac{\partial g(x,y)}{\partial x},
                      \frac{\partial g(x,y)}{\partial y},x,y\right)

        In many cases it is not necessary to provide anything, except the
        Lagrangian, it will be auto-detected (and an error raised if this
        cannot be done).

    funcs : Function or an iterable of Functions
        The functions that the Lagrangian depends on. The Euler equations
        are differential equations for each of these functions.

    vars : Symbol or an iterable of Symbols
        The Symbols that are the independent variables of the functions.

    Returns
    =======

    eqns : list of Eq
        The list of differential equations, one for each function.

    Examples
    ========

    >>> from sympy import euler_equations, Symbol, Function
    >>> x = Function('x')
    >>> t = Symbol('t')
    >>> L = (x(t).diff(t))**2/2 - x(t)**2/2
    >>> euler_equations(L, x(t), t)
    [Eq(-x(t) - Derivative(x(t), (t, 2)), 0)]
    >>> u = Function('u')
    >>> x = Symbol('x')
    >>> L = (u(t, x).diff(t))**2/2 - (u(t, x).diff(x))**2/2
    >>> euler_equations(L, u(t, x), [t, x])
    [Eq(-Derivative(u(t, x), (t, 2)) + Derivative(u(t, x), (x, 2)), 0)]

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation

    zFunction expected, got: %sr   c                 s   s    | ]}t |V  qd S Nr	   ).0varr   r   h/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/calculus/euler.py	<genexpr>V   s    z"euler_equations.<locals>.<genexpr>c                 s   s    | ]}t |tV  qd S r   )
isinstancer   )r   vr   r   r   r   X   s    z!Variables are not symbols, got %sz"Variables %s do not match args: %sc                    s    g | ]}|j  v rt|jqS r   )exprlen	variables)r   dfuncsr   r   
<listcomp>_   s    
z#euler_equations.<locals>.<listcomp>   )r   tupleatomsr   r   	TypeErrorargsall
ValueErrormaxr   r   ranger   r   NegativeOner   append)
Lr   varsfordereqnseqipnew_eqr   r   r   euler_equations   s@   :


.


r/   N)r   r   )__doc__	itertoolsr   sympy.core.functionr   r   r   sympy.core.relationalr   sympy.core.singletonr   sympy.core.symbolr   sympy.core.sympifyr
   sympy.utilities.iterablesr   r/   r   r   r   r   <module>   s    