o
    h                     @   s`   d Z ddlZddlmZ ddgZededejdd	dddZejddddd ZdS )zTFunctions related to the Mycielski Operation and the Mycielskian family
of graphs.

    N)not_implemented_formycielskianmycielski_graphdirected
multigraphT)returns_graph   c                    s   t | }t|D ]C}|  |t d   t| }| fdd|D  | fdd|D  |d   | fddt D  q	|S )a^  Returns the Mycielskian of a simple, undirected graph G

    The Mycielskian of graph preserves a graph's triangle free
    property while increasing the chromatic number by 1.

    The Mycielski Operation on a graph, :math:`G=(V, E)`, constructs a new
    graph with :math:`2|V| + 1` nodes and :math:`3|E| + |V|` edges.

    The construction is as follows:

    Let :math:`V = {0, ..., n-1}`. Construct another vertex set
    :math:`U = {n, ..., 2n}` and a vertex, `w`.
    Construct a new graph, `M`, with vertices :math:`U \bigcup V \bigcup w`.
    For edges, :math:`(u, v) \in E` add edges :math:`(u, v), (u, v + n)`, and
    :math:`(u + n, v)` to M. Finally, for all vertices :math:`u \in U`, add
    edge :math:`(u, w)` to M.

    The Mycielski Operation can be done multiple times by repeating the above
    process iteratively.

    More information can be found at https://en.wikipedia.org/wiki/Mycielskian

    Parameters
    ----------
    G : graph
        A simple, undirected NetworkX graph
    iterations : int
        The number of iterations of the Mycielski operation to
        perform on G. Defaults to 1. Must be a non-negative integer.

    Returns
    -------
    M : graph
        The Mycielskian of G after the specified number of iterations.

    Notes
    -----
    Graph, node, and edge data are not necessarily propagated to the new graph.

       c                 3   s     | ]\}}||  fV  qd S N .0uvnr   q/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/networkx/generators/mycielski.py	<genexpr>?       zmycielskian.<locals>.<genexpr>c                 3   s     | ]\}}|  |fV  qd S r
   r   r   r   r   r   r   @   r   c                 3   s     | ]}|  d   fV  qdS )r	   Nr   )r   r   r   r   r   r   B   r   )	nxconvert_node_labels_to_integersrangenumber_of_nodesadd_nodes_fromlistedgesadd_edges_fromadd_node)G
iterationsMi	old_edgesr   r   r   r      s   
-)graphsr   c                 C   s8   | dk r	t d| dkrt dS tt d| d S )a  Generator for the n_th Mycielski Graph.

    The Mycielski family of graphs is an infinite set of graphs.
    :math:`M_1` is the singleton graph, :math:`M_2` is two vertices with an
    edge, and, for :math:`i > 2`, :math:`M_i` is the Mycielskian of
    :math:`M_{i-1}`.

    More information can be found at
    http://mathworld.wolfram.com/MycielskiGraph.html

    Parameters
    ----------
    n : int
        The desired Mycielski Graph.

    Returns
    -------
    M : graph
        The n_th Mycielski Graph

    Notes
    -----
    The first graph in the Mycielski sequence is the singleton graph.
    The Mycielskian of this graph is not the :math:`P_2` graph, but rather the
    :math:`P_2` graph with an extra, isolated vertex. The second Mycielski
    graph is the :math:`P_2` graph, so the first two are hard coded.
    The remaining graphs are generated using the Mycielski operation.

    r   zmust satisfy n >= 1r	   )r   NetworkXErrorempty_graphr   
path_graphr   r   r   r   r   G   s
    

)r   )	__doc__networkxr   networkx.utilsr   __all___dispatchabler   r   r   r   r   r   <module>   s    
8