o
    lÇh´&  ã                   @   s`   d dl m Z  ddlmZ G dd„ deƒZdd„ Zddd„Zee_edkr.d dlZe 	¡  dS dS )é    )Úbisecté   )Úxrangec                   @   s   e Zd ZdS )Ú
ODEMethodsN)Ú__name__Ú
__module__Ú__qualname__© r	   r	   úh/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/mpmath/calculus/odes.pyr      s    r   c              	      sÎ  |   d| ¡ ‰}t|ƒ}|g}|g}	|}
|‰| j}z£|d|  | _t|ƒD ]$}||
ˆƒ‰ ‡ ‡‡fdd„ttˆƒƒD ƒ‰|
ˆ7 }
| |
¡ |	 ˆ¡ q&dd„ t|ƒD ƒ}t|d ƒD ]^}dg| }d|d@  }d}t|d ƒD ]&}t|ƒD ]}||  ||	| |  7  < qu||| d  |  }|d7 }qoˆ|  |  |¡ }t|ƒD ]}|| | ||< ||  || ¡ q¤qZW || _n|| _w | j}|D ]}|d rÜt||  	|t
|d ƒ |¡ƒ}qÇ|d }||| fS )Né   c                    s    g | ]}ˆ| ˆˆ |   ‘qS r	   r	   )Ú.0Úi©ÚfxyÚhÚyr	   r
   Ú
<listcomp>   s     zode_taylor.<locals>.<listcomp>c                 S   s   g | ]}g ‘qS r	   r	   )r   Údr	   r	   r
   r      ó    r   éÿÿÿÿr   )ÚldexpÚlenÚprecÚranger   ÚappendÚfacÚoneÚminÚnthrootÚabs)ÚctxÚderivsÚx0Úy0Útol_precÚnÚtolÚdimÚxsÚysÚxÚorigr   ÚserÚjÚsÚbÚkr   ÚscaleÚradiusÚtsr	   r   r
   Ú
ode_taylor   sN   



þö€r4   NÚtaylorFc              	      sò   |rt ˆ |d¡ ƒd ‰	nˆjd ‰	ˆpdt dˆj d ƒ ‰ˆjd ‰zt|ƒ d‰W n tyC   ˆ ‰‡fdd„‰ |g}d	‰Y nw tˆˆ ˆ|ˆ	ˆƒ\}}	ˆ|	g‰|ˆ|	fg‰‡fd
d„‰‡ ‡‡‡‡‡‡	‡
‡f	dd„‰‡‡‡‡‡fdd„}
|
S )aû  
    Returns a function `y(x) = [y_0(x), y_1(x), \ldots, y_n(x)]`
    that is a numerical solution of the `n+1`-dimensional first-order
    ordinary differential equation (ODE) system

    .. math ::

        y_0'(x) = F_0(x, [y_0(x), y_1(x), \ldots, y_n(x)])

        y_1'(x) = F_1(x, [y_0(x), y_1(x), \ldots, y_n(x)])

        \vdots

        y_n'(x) = F_n(x, [y_0(x), y_1(x), \ldots, y_n(x)])

    The derivatives are specified by the vector-valued function
    *F* that evaluates
    `[y_0', \ldots, y_n'] = F(x, [y_0, \ldots, y_n])`.
    The initial point `x_0` is specified by the scalar argument *x0*,
    and the initial value `y(x_0) =  [y_0(x_0), \ldots, y_n(x_0)]` is
    specified by the vector argument *y0*.

    For convenience, if the system is one-dimensional, you may optionally
    provide just a scalar value for *y0*. In this case, *F* should accept
    a scalar *y* argument and return a scalar. The solution function
    *y* will return scalar values instead of length-1 vectors.

    Evaluation of the solution function `y(x)` is permitted
    for any `x \ge x_0`.

    A high-order ODE can be solved by transforming it into first-order
    vector form. This transformation is described in standard texts
    on ODEs. Examples will also be given below.

    **Options, speed and accuracy**

    By default, :func:`~mpmath.odefun` uses a high-order Taylor series
    method. For reasonably well-behaved problems, the solution will
    be fully accurate to within the working precision. Note that
    *F* must be possible to evaluate to very high precision
    for the generation of Taylor series to work.

    To get a faster but less accurate solution, you can set a large
    value for *tol* (which defaults roughly to *eps*). If you just
    want to plot the solution or perform a basic simulation,
    *tol = 0.01* is likely sufficient.

    The *degree* argument controls the degree of the solver (with
    *method='taylor'*, this is the degree of the Taylor series
    expansion). A higher degree means that a longer step can be taken
    before a new local solution must be generated from *F*,
    meaning that fewer steps are required to get from `x_0` to a given
    `x_1`. On the other hand, a higher degree also means that each
    local solution becomes more expensive (i.e., more evaluations of
    *F* are required per step, and at higher precision).

    The optimal setting therefore involves a tradeoff. Generally,
    decreasing the *degree* for Taylor series is likely to give faster
    solution at low precision, while increasing is likely to be better
    at higher precision.

    The function
    object returned by :func:`~mpmath.odefun` caches the solutions at all step
    points and uses polynomial interpolation between step points.
    Therefore, once `y(x_1)` has been evaluated for some `x_1`,
    `y(x)` can be evaluated very quickly for any `x_0 \le x \le x_1`.
    and continuing the evaluation up to `x_2 > x_1` is also fast.

    **Examples of first-order ODEs**

    We will solve the standard test problem `y'(x) = y(x), y(0) = 1`
    which has explicit solution `y(x) = \exp(x)`::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> f = odefun(lambda x, y: y, 0, 1)
        >>> for x in [0, 1, 2.5]:
        ...     print((f(x), exp(x)))
        ...
        (1.0, 1.0)
        (2.71828182845905, 2.71828182845905)
        (12.1824939607035, 12.1824939607035)

    The solution with high precision::

        >>> mp.dps = 50
        >>> f = odefun(lambda x, y: y, 0, 1)
        >>> f(1)
        2.7182818284590452353602874713526624977572470937
        >>> exp(1)
        2.7182818284590452353602874713526624977572470937

    Using the more general vectorized form, the test problem
    can be input as (note that *f* returns a 1-element vector)::

        >>> mp.dps = 15
        >>> f = odefun(lambda x, y: [y[0]], 0, [1])
        >>> f(1)
        [2.71828182845905]

    :func:`~mpmath.odefun` can solve nonlinear ODEs, which are generally
    impossible (and at best difficult) to solve analytically. As
    an example of a nonlinear ODE, we will solve `y'(x) = x \sin(y(x))`
    for `y(0) = \pi/2`. An exact solution happens to be known
    for this problem, and is given by
    `y(x) = 2 \tan^{-1}\left(\exp\left(x^2/2\right)\right)`::

        >>> f = odefun(lambda x, y: x*sin(y), 0, pi/2)
        >>> for x in [2, 5, 10]:
        ...     print((f(x), 2*atan(exp(mpf(x)**2/2))))
        ...
        (2.87255666284091, 2.87255666284091)
        (3.14158520028345, 3.14158520028345)
        (3.14159265358979, 3.14159265358979)

    If `F` is independent of `y`, an ODE can be solved using direct
    integration. We can therefore obtain a reference solution with
    :func:`~mpmath.quad`::

        >>> f = lambda x: (1+x**2)/(1+x**3)
        >>> g = odefun(lambda x, y: f(x), pi, 0)
        >>> g(2*pi)
        0.72128263801696
        >>> quad(f, [pi, 2*pi])
        0.72128263801696

    **Examples of second-order ODEs**

    We will solve the harmonic oscillator equation `y''(x) + y(x) = 0`.
    To do this, we introduce the helper functions `y_0 = y, y_1 = y_0'`
    whereby the original equation can be written as `y_1' + y_0' = 0`. Put
    together, we get the first-order, two-dimensional vector ODE

    .. math ::

        \begin{cases}
        y_0' = y_1 \\
        y_1' = -y_0
        \end{cases}

    To get a well-defined IVP, we need two initial values. With
    `y(0) = y_0(0) = 1` and `-y'(0) = y_1(0) = 0`, the problem will of
    course be solved by `y(x) = y_0(x) = \cos(x)` and
    `-y'(x) = y_1(x) = \sin(x)`. We check this::

        >>> f = odefun(lambda x, y: [-y[1], y[0]], 0, [1, 0])
        >>> for x in [0, 1, 2.5, 10]:
        ...     nprint(f(x), 15)
        ...     nprint([cos(x), sin(x)], 15)
        ...     print("---")
        ...
        [1.0, 0.0]
        [1.0, 0.0]
        ---
        [0.54030230586814, 0.841470984807897]
        [0.54030230586814, 0.841470984807897]
        ---
        [-0.801143615546934, 0.598472144103957]
        [-0.801143615546934, 0.598472144103957]
        ---
        [-0.839071529076452, -0.54402111088937]
        [-0.839071529076452, -0.54402111088937]
        ---

    Note that we get both the sine and the cosine solutions
    simultaneously.

    **TODO**

    * Better automatic choice of degree and step size
    * Make determination of Taylor series convergence radius
      more robust
    * Allow solution for `x < x_0`
    * Allow solution for complex `x`
    * Test for difficult (ill-conditioned) problems
    * Implement Runge-Kutta and other algorithms

    r   é
   é   g       @é(   Tc                    s   ˆ | |d ƒgS )Nr   r	   )r*   r   )ÚF_r	   r
   Ú<lambda>ñ   r   zodefun.<locals>.<lambda>Fc                    s   ‡ ‡fdd„| D ƒS )Nc                    s"   g | ]}ˆ  |d d d… ˆ ¡‘qS )Nr   )Úpolyval)r   r.   )Úar    r	   r
   r   ù   s   " z,odefun.<locals>.mpolyval.<locals>.<listcomp>r	   )r,   r<   )r    )r<   r
   Úmpolyvalø   s   zodefun.<locals>.mpolyvalc                    s¦   | ˆk rt ‚tˆ| ƒ}|tˆƒk rˆ|d  S 	 ˆd \}}}ˆr)td||f ƒ ˆ||| ƒ}|}tˆˆ ||ˆˆƒ\}}ˆ |¡ ˆ |||f¡ | |krRˆd S q)Nr   r   z$Computing Taylor series for [%f, %f])Ú
ValueErrorr   r   Úprintr4   r   )r*   r%   r,   ÚxaÚxbr   )	ÚFr    Údegreer=   Úseries_boundariesÚseries_datar$   Úverboser"   r	   r
   Ú
get_seriesû   s"   

özodefun.<locals>.get_seriesc                    sb   ˆ   | ¡} ˆ j}zˆˆ _ˆ| ƒ\}}}ˆ|| | ƒ}W |ˆ _n|ˆ _w ˆr,dd„ |D ƒS |d 
 S )Nc                 S   s   g | ]}|
 ‘qS r	   r	   )r   Úykr	   r	   r
   r     s    z/odefun.<locals>.interpolant.<locals>.<listcomp>r   )Úconvertr   )r*   r+   r,   r@   rA   r   )r    rG   r=   Úreturn_vectorÚworkprecr	   r
   Úinterpolant  s   

zodefun.<locals>.interpolant)ÚintÚlogr   Údpsr   Ú	TypeErrorr4   )r    rB   r"   r#   r&   rC   ÚmethodrF   r,   rA   rL   r	   )rB   r9   r    rC   rG   r=   rJ   rD   rE   r$   rF   rK   r"   r
   Úodefun3   s,    4

ürR   Ú__main__)NNr5   F)
r   Úlibmp.backendr   Úobjectr   r4   rR   r   ÚdoctestÚtestmodr	   r	   r	   r
   Ú<module>   s    
, jþ