o
    lh="                     @   s  d Z ddlmZmZ ddlmZ ddlmZ ddlm	Z	 e Z
e Ze	 Zee
_ee_ee_e
e_e
e
_ee_ee
_ee_ddlmZ ejej_ejej_ejZejZejZejZejZejZejZejZejZejZejZej Z ej!Z!ej"Z"ej#Z#ej$Z$ej%Z%ej&Z&ej'Z'ej(Z(ej)Z)ej*Z*ej+Z+ej,Z,ej-Z-ej.Z.ej/Z/ej0Z0ej1Z1ej2Z2ej3Z3ej4Z4ej5Z5ej6Z6ej7Z7ej8Z8ej9Z9ej:Z:ej;Z;ej<Z<ej=Z=ej>Z>ej?Z?ej@Z@ejAZAejB ZCZBejZejDZEejFZFejGZGejHZHejIZIejJZJejKZKejLZLejMZMejNZNejOZOejPZPejQZQejRZRejSZSejTZTejUZUejVZVejWZWejXZXejYZYejZZZej[Z[ej\Z\ej]Z]ej^Z^ej_Z_ej`Z`ejaZaejbZbejcZcejdZdejeZeejfZfejgZgejhZhejiZiejjZjejkZkejlZlejmZmejnZnejoZoejpZpejqZqejrZrejsZsejtZtejuZuejvZvejwZwejxZxejyZyejzZzej{Z{ej|Z|ej}Z}ej~Z~ejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZej Z ejZejZejZejZejZejZejZejZej	Z	ej
Z
ejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZejZej Z ej!Z!ej"Z"ej#Z#ej$Z$ej%Z%ej&Z&ej'Z'ej(Z(ej)Z)ej*Z*ej+Z+ej,Z,ej-Z-ej.Z.ej/Z/ej0Z0ej1Z1ej2Z2ej3Z3ej4Z4ej5Z5ej6Z6ej7Z7ej8Z8ej9Z9ej:Z:ej;Z;ej<Z<ej=Z=ej>Z>ej?Z?ej@Z@ejAZAejBZBejCZCejDZDejEZEejFZFejGZGejHZHejIZIejJZJejKZKejLZLejMZMejNZNejOZOejPZPejQZQejRZRejSZSejTZTejUZUejVZVejWZWejXZXejYZYejZZZej[Z[ej\Z\ej]Z]ej^Z^ej_Z_ej`Z`ejaZaejbZbejcZcejdZdejeZeejfZfejgZgejhZhejiZiejjZjejkZkejlZlejmZmejnZnejoZoejpZpejqZqejrZrejsZsejtZtejuZuejvZvejwZwejxZxejyZyejzZzej{Z{ej|Z|ej}Z}ej~Z~ejZdd Zg fd	d
Zedkre  dS dS )z1.3.0   )monitortiming)	FPContext)	MPContext)MPIntervalContext)ctx_mpc                  C   sX   ddl } ddlm} ddlm} | j| j||}| j|d }||| dS )z0
    Run all mpmath tests and print output.
        N)getsourcefiler   )runtestsz/../..)	os.pathinspectr	   testsr
   pathdirnameabspathtestit)osr	   r   testdir	importdir r   c/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/mpmath/__init__.pyr
     s   r
   c           	         s   dd l }ddlm} t|jD ]\}}d|v r'dd |j|d d  D }  nqdd l}t  }|D ]; | rCt fdd| D sCq3|j	
t d  |j	  | }|j|  i d	|jv d
 | }tt|| d q3d S )Nr   )default_timerz__init__.pyc                 S   s   g | ]	}| d s|qS )-)
startswith).0snr   r   r   
<listcomp>  s    zdoctests.<locals>.<listcomp>r   c                    s   g | ]}| v qS r   r   )r   patobjr   r   r     s     z-v)verbose   )systimeitr   	enumerateargvdoctestglobalscopysumstdoutwritestrflushrun_docstring_examplesprintround)	filterr#   clockiargr'   globst1t2r   r   r   doctests  s(   

r9   __main__N(  __version__	usertoolsr   r   ctx_fpr   r   r   ctx_ivr   fpmpiv_mp_fp_iv _ctx_mpmpf_mpf_modulempcmake_mpfmake_mpc	extraprecextradpsworkprecworkdpsautoprecmaxcallsmemoizemagbernfracqfrommfromkfromtaufromqbarfromellipfunjthetakleinjetaqpqhyperqgammaqfacnint_distanceplotcplotsplotodefunjacobianfindrootmultiplicityisinfisnanisnormalisintisfinitealmosteqnanrandabsminabsmaxfractionlinspacearangeconvert	mpmathify_mpimpinstrnprintchopfnegfaddfsubfmulfdivfprodquadquadglquadtsquadosc
quadsubdivinvertlaplaceinvlaptalbotinvlapstehfestinvlapdehoogpslqidentifyfindpoly
richardsonshankslevin	cohen_altnsumnprod
differencediffdiffs
diffs_prod	diffs_expdiffun	differinttaylorpadepolyval	polyrootsfourier
fouriervalsumemsumapchebyfitlimitmatrixeyediagzerosoneshilbert
randmatrixswap_rowextendnormmnormlu_solveluqr
unitvectorinverseresidualqr_solvecholeskycholesky_solvedetcond
hessenbergschureigeig_sorteigsyeigheeighsvd_rsvd_csvdgauss_quadratureexpmsqrtmpowmlogmsinmcosmjexpexpjexpjpilnimreinfninfsignepspiln2ln10phieeulercatalankhinchinglaisheraperydegree	twinprimemertensldexpfrexpfsumfdotsqrtcbrtloglog10powercossintancoshsinhtanhacosasinatanasinhacoshatanhseccsccotsechcschcothasecacscacotasechacschacothcospisinpisincsincpicos_sincospi_sinpifabsconjfloorceilnintfracrootnthroothypotfmodr5   phasepolarrectdegreesradiansatan2fib	fibonaccilambertwzetaaltzetagammargamma	factorialfacfac2betabetaincpsi	polygammadigammaharmonic	bernoulli	stieltjeshurwitz	dirichletbernpoly	eulerpolyeulernumpolylogclsinclcosgammainc	gammaprodbinomialrfffhyperhyp0f1hyp1f1hyp1f2hyp2f1hyp2f2hyp2f0hyp2f3hyp3f2hyperu	hypercombmeijergappellf1appellf2appellf3appellf4hyper2dbihypererferfcerfierfinvnpdfncdfexpinte1eilicisichishifresnelsfresnelcairyaiairybi
airyaizero
airybizeroscorergiscorerhiellipkellipeellipfellippielliprcelliprjelliprfelliprdelliprgagmjacobichebytchebyulegendrelegenplegenqhermitepcfdpcfupcfvpcfw
gegenbauerlaguerre	spherharmbesseljj0j1besselibesselybesselkbesseljzerobesselyzerohankel1hankel2struvehstruvelangerjweberelommels1lommels2whitmwhitwberbeikerkeicoulombccoulombfcoulombgbarnesgsuperfachyperfacloggammasiegelthetasiegelz	grampointzetazeroriemannrprimepiprimepi2	primezetabellpolyexpexpm1log1ppowm1	unitroots
cyclotomicmangoldt
secondzetanzeros	backlundslerchphi	stirling1	stirling2squarew	trianglew	sawtoothwunit_trianglesigmoidr
   r9   __name__r   r   r   r   <module>   s   



































































































































