o
    Uh                     @   s  d Z ddlZddlmZ ddlmZ ddlmZ ddlm	Z	m
Z
 ddlmZmZmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZmZ dd	lmZm Z m!Z!m"Z" dd
lm#Z#m$Z$m%Z% ddl&m'Z' g dZ(e) Z*ze+dd W n e,y   e+Z-Y nw e
e+ddZ-zddlm.Z/ W n e0y   dd Z/Y nw dd Z1dddZ2dd Z3dddZ4dddZ5dddZ6e7fddZ8d d! Z9e9Z:d"d# Z;d$d% Z<d&d' Z=dd(d)Z>d*d+ Z?zdd,lm@ZA W n e0y   e?Z@Y n	w d-d. Z@e?j e@_ G d/d0 d0eBZCd1d2 ZDd3d4 ZEdd6d7ZFd8d9 ZGd:d; ZHd<d= ZIdd>d?ZJdd@dAZKddCdDZLddEdFZMddGdHZNdIdJdKdLZOddMdNZPdOdP ZQdQdR ZRdSdT ZSdUdV ZTdWdX ZUdYdZ ZVd[d\ ZWd]d^ ZXd_d` ZYdadb ZZdcdd Z[dedf Z\ddgdhZ]didj Z^dBddkdlZ_e'dmkrddnlm`Za dBddodpZ`ne_Z`e_j e`_ dqdr Zbdsdt Zcdudv Zddwdx Zeefe^dyZgdzd{ Zhd|d} Zid~d Zjdd Zkdd Zlg dZme	dd Zndd Zoep j#Zqdd Zrdd Zsdd ZtdS )a  Imported from the recipes section of the itertools documentation.

All functions taken from the recipes section of the itertools library docs
[1]_.
Some backward-compatible usability improvements have been made.

.. [1] http://docs.python.org/library/itertools.html#recipes

    N)dequesuppress)Sized)	lru_cachepartial)
accumulatechaincombinationscompresscountcyclegroupbyisliceproductrepeatstarmapteezip_longest)prodcombisqrtgcd)mulnot_
itemgettergetitem)	randrangesamplechoice)
hexversion)1	all_equalbatchedbefore_and_afterconsumeconvolve
dotproduct
first_truefactorflattengrouperis_primeiter_except
iter_indexloopsmatmulmultinomialncyclesnthnth_combinationpadnonepad_nonepairwise	partitionpolynomial_evalpolynomial_from_rootspolynomial_derivativepowersetprependquantifyreshape#random_combination_with_replacementrandom_combinationrandom_permutationrandom_product
repeatfunc
roundrobinsievesliding_window	subslicessum_of_squarestabulatetailtaketotient	transpose
triplewiseuniqueunique_everseenunique_justseenTstrict)sumprodc                 C   s
   t | |S N)r&   )xy rX   j/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/more_itertools/recipes.py<lambda>i   s   
 rZ   c                 C      t t|| S )zReturn first *n* items of the *iterable* as a list.

        >>> take(3, range(10))
        [0, 1, 2]

    If there are fewer than *n* items in the iterable, all of them are
    returned.

        >>> take(10, range(3))
        [0, 1, 2]

    )listr   niterablerX   rX   rY   rK   l   s   rK   c                 C   s   t | t|S )a  Return an iterator over the results of ``func(start)``,
    ``func(start + 1)``, ``func(start + 2)``...

    *func* should be a function that accepts one integer argument.

    If *start* is not specified it defaults to 0. It will be incremented each
    time the iterator is advanced.

        >>> square = lambda x: x ** 2
        >>> iterator = tabulate(square, -3)
        >>> take(4, iterator)
        [9, 4, 1, 0]

    )mapr   )functionstartrX   rX   rY   rI   |   s   rI   c                 C   s4   t |trt|tdt||  dS tt|| dS )zReturn an iterator over the last *n* items of *iterable*.

    >>> t = tail(3, 'ABCDEFG')
    >>> list(t)
    ['E', 'F', 'G']

    r   Nmaxlen)
isinstancer   r   maxleniterr   r]   rX   rX   rY   rJ      s   
rJ   c                 C   s.   |du rt | dd dS tt| ||d dS )aX  Advance *iterable* by *n* steps. If *n* is ``None``, consume it
    entirely.

    Efficiently exhausts an iterator without returning values. Defaults to
    consuming the whole iterator, but an optional second argument may be
    provided to limit consumption.

        >>> i = (x for x in range(10))
        >>> next(i)
        0
        >>> consume(i, 3)
        >>> next(i)
        4
        >>> consume(i)
        >>> next(i)
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
        StopIteration

    If the iterator has fewer items remaining than the provided limit, the
    whole iterator will be consumed.

        >>> i = (x for x in range(3))
        >>> consume(i, 5)
        >>> next(i)
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
        StopIteration

    Nr   rc   )r   nextr   )iteratorr^   rX   rX   rY   r$      s    r$   c                 C   s   t t| |d|S )zReturns the nth item or a default value.

    >>> l = range(10)
    >>> nth(l, 3)
    3
    >>> nth(l, 20, "zebra")
    'zebra'

    N)ri   r   )r_   r^   defaultrX   rX   rY   r2      s   
r2   c                 C   s,   t | |}|D ]}|D ]}  dS  dS dS )a  
    Returns ``True`` if all the elements are equal to each other.

        >>> all_equal('aaaa')
        True
        >>> all_equal('aaab')
        False

    A function that accepts a single argument and returns a transformed version
    of each input item can be specified with *key*:

        >>> all_equal('AaaA', key=str.casefold)
        True
        >>> all_equal([1, 2, 3], key=lambda x: x < 10)
        True

    FT)r   )r_   keyrj   firstsecondrX   rX   rY   r!      s   
r!   c                 C   r[   )zcReturn the how many times the predicate is true.

    >>> quantify([True, False, True])
    2

    )sumr`   )r_   predrX   rX   rY   r=      s   r=   c                 C   s   t | tdS )a   Returns the sequence of elements and then returns ``None`` indefinitely.

        >>> take(5, pad_none(range(3)))
        [0, 1, 2, None, None]

    Useful for emulating the behavior of the built-in :func:`map` function.

    See also :func:`padded`.

    N)r	   r   r_   rX   rX   rY   r5      s   r5   c                 C   s   t tt| |S )zvReturns the sequence elements *n* times

    >>> list(ncycles(["a", "b"], 3))
    ['a', 'b', 'a', 'b', 'a', 'b']

    )r	   from_iterabler   tupler_   r^   rX   rX   rY   r1   
  s   r1   c                 C   s   t tt| |S )zReturns the dot product of the two iterables.

    >>> dotproduct([10, 15, 12], [0.65, 0.80, 1.25])
    33.5
    >>> 10 * 0.65 + 15 * 0.80 + 12 * 1.25
    33.5

    In Python 3.12 and later, use ``math.sumprod()`` instead.
    )ro   r`   r   )vec1vec2rX   rX   rY   r&     s   
r&   c                 C   s
   t | S )zReturn an iterator flattening one level of nesting in a list of lists.

        >>> list(flatten([[0, 1], [2, 3]]))
        [0, 1, 2, 3]

    See also :func:`collapse`, which can flatten multiple levels of nesting.

    )r	   rr   )listOfListsrX   rX   rY   r)   !  s   
	r)   c                 G   s&   |du rt | t|S t | t||S )aG  Call *func* with *args* repeatedly, returning an iterable over the
    results.

    If *times* is specified, the iterable will terminate after that many
    repetitions:

        >>> from operator import add
        >>> times = 4
        >>> args = 3, 5
        >>> list(repeatfunc(add, times, *args))
        [8, 8, 8, 8]

    If *times* is ``None`` the iterable will not terminate:

        >>> from random import randrange
        >>> times = None
        >>> args = 1, 11
        >>> take(6, repeatfunc(randrange, times, *args))  # doctest:+SKIP
        [2, 4, 8, 1, 8, 4]

    N)r   r   )functimesargsrX   rX   rY   rC   -  s   rC   c                 C   s    t | \}}t|d t||S )zReturns an iterator of paired items, overlapping, from the original

    >>> take(4, pairwise(count()))
    [(0, 1), (1, 2), (2, 3), (3, 4)]

    On Python 3.10 and above, this is an alias for :func:`itertools.pairwise`.

    Nr   ri   zip)r_   abrX   rX   rY   	_pairwiseH  s   	

r   )r6   c                 C   s   t | S rU   )itertools_pairwiserq   rX   rX   rY   r6   \  s   r6   c                       s   e Zd Zd fdd	Z  ZS )UnequalIterablesErrorNc                    s*   d}|d ur|dj | 7 }t | d S )Nz Iterables have different lengthsz/: index 0 has length {}; index {} has length {})formatsuper__init__)selfdetailsmsg	__class__rX   rY   r   c  s   zUnequalIterablesError.__init__rU   )__name__
__module____qualname__r   __classcell__rX   rX   r   rY   r   b  s    r   c                 c   s8    t | dtiD ]}|D ]	}|tu rt q|V  qd S )N	fillvalue)r   _markerr   )	iterablescombovalrX   rX   rY   _zip_equal_generatorm  s   r   c                  G   sn   z)t | d }t| dd  dD ]\}}t |}||kr$t|||fdqt|  W S  ty6   t|  Y S w )Nr      )r   )rg   	enumerater   r|   	TypeErrorr   )r   
first_sizeiitsizerX   rX   rY   
_zip_equalu  s   
r   fillc                 C   sL   t | g| }|dkrt|d|iS |dkrt| S |dkr"t| S td)a  Group elements from *iterable* into fixed-length groups of length *n*.

    >>> list(grouper('ABCDEF', 3))
    [('A', 'B', 'C'), ('D', 'E', 'F')]

    The keyword arguments *incomplete* and *fillvalue* control what happens for
    iterables whose length is not a multiple of *n*.

    When *incomplete* is `'fill'`, the last group will contain instances of
    *fillvalue*.

    >>> list(grouper('ABCDEFG', 3, incomplete='fill', fillvalue='x'))
    [('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]

    When *incomplete* is `'ignore'`, the last group will not be emitted.

    >>> list(grouper('ABCDEFG', 3, incomplete='ignore', fillvalue='x'))
    [('A', 'B', 'C'), ('D', 'E', 'F')]

    When *incomplete* is `'strict'`, a subclass of `ValueError` will be raised.

    >>> iterator = grouper('ABCDEFG', 3, incomplete='strict')
    >>> list(iterator)  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    UnequalIterablesError

    r   r   rS   ignorez Expected fill, strict, or ignore)rh   r   r   r|   
ValueError)r_   r^   
incompleter   	iteratorsrX   rX   rY   r*     s   r*   c                  g   sD    t t| }tt| ddD ]}tt||}t t|E dH  qdS )aG  Visit input iterables in a cycle until each is exhausted.

        >>> list(roundrobin('ABC', 'D', 'EF'))
        ['A', 'D', 'E', 'B', 'F', 'C']

    This function produces the same output as :func:`interleave_longest`, but
    may perform better for some inputs (in particular when the number of
    iterables is small).

    r   N)r`   rh   rangerg   r   r   ri   )r   r   
num_activerX   rX   rY   rD     s   
rD   c                 C   sH   | du rt } t|d\}}}tt| |\}}t|tt|t||fS )a  
    Returns a 2-tuple of iterables derived from the input iterable.
    The first yields the items that have ``pred(item) == False``.
    The second yields the items that have ``pred(item) == True``.

        >>> is_odd = lambda x: x % 2 != 0
        >>> iterable = range(10)
        >>> even_items, odd_items = partition(is_odd, iterable)
        >>> list(even_items), list(odd_items)
        ([0, 2, 4, 6, 8], [1, 3, 5, 7, 9])

    If *pred* is None, :func:`bool` is used.

        >>> iterable = [0, 1, False, True, '', ' ']
        >>> false_items, true_items = partition(None, iterable)
        >>> list(false_items), list(true_items)
        ([0, False, ''], [1, True, ' '])

    N   )boolr   r`   r   r   )rp   r_   t1t2pp1p2rX   rX   rY   r7     s
   r7   c                    s,   t |  t fddtt d D S )a1  Yields all possible subsets of the iterable.

        >>> list(powerset([1, 2, 3]))
        [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

    :func:`powerset` will operate on iterables that aren't :class:`set`
    instances, so repeated elements in the input will produce repeated elements
    in the output.

        >>> seq = [1, 1, 0]
        >>> list(powerset(seq))
        [(), (1,), (1,), (0,), (1, 1), (1, 0), (1, 0), (1, 1, 0)]

    For a variant that efficiently yields actual :class:`set` instances, see
    :func:`powerset_of_sets`.
    c                 3       | ]}t  |V  qd S rU   )r
   ).0rsrX   rY   	<genexpr>      zpowerset.<locals>.<genexpr>r   )r\   r	   rr   r   rg   rq   rX   r   rY   r;     s   $r;   c           	   	   c   s    t  }|j}g }|j}|du}| D ]+}|r||n|}z||vr(|| |V  W q ty=   ||vr;|| |V  Y qw dS )a  
    Yield unique elements, preserving order.

        >>> list(unique_everseen('AAAABBBCCDAABBB'))
        ['A', 'B', 'C', 'D']
        >>> list(unique_everseen('ABBCcAD', str.lower))
        ['A', 'B', 'C', 'D']

    Sequences with a mix of hashable and unhashable items can be used.
    The function will be slower (i.e., `O(n^2)`) for unhashable items.

    Remember that ``list`` objects are unhashable - you can use the *key*
    parameter to transform the list to a tuple (which is hashable) to
    avoid a slowdown.

        >>> iterable = ([1, 2], [2, 3], [1, 2])
        >>> list(unique_everseen(iterable))  # Slow
        [[1, 2], [2, 3]]
        >>> list(unique_everseen(iterable, key=tuple))  # Faster
        [[1, 2], [2, 3]]

    Similarly, you may want to convert unhashable ``set`` objects with
    ``key=frozenset``. For ``dict`` objects,
    ``key=lambda x: frozenset(x.items())`` can be used.

    N)setaddappendr   )	r_   rl   seensetseenset_addseenlistseenlist_adduse_keyelementkrX   rX   rY   rP     s(   rP   c                 C   s4   |du rt tdt| S t tt tdt| |S )zYields elements in order, ignoring serial duplicates

    >>> list(unique_justseen('AAAABBBCCDAABBB'))
    ['A', 'B', 'C', 'D', 'A', 'B']
    >>> list(unique_justseen('ABBCcAD', str.lower))
    ['A', 'B', 'C', 'A', 'D']

    Nr   r   )r`   r   r   ri   )r_   rl   rX   rX   rY   rQ     s   	rQ   Fc                 C   s   t | ||d}t||dS )a  Yields unique elements in sorted order.

    >>> list(unique([[1, 2], [3, 4], [1, 2]]))
    [[1, 2], [3, 4]]

    *key* and *reverse* are passed to :func:`sorted`.

    >>> list(unique('ABBcCAD', str.casefold))
    ['A', 'B', 'c', 'D']
    >>> list(unique('ABBcCAD', str.casefold, reverse=True))
    ['D', 'c', 'B', 'A']

    The elements in *iterable* need not be hashable, but they must be
    comparable for sorting to work.
    )rl   reverse)rl   )sortedrQ   )r_   rl   r   	sequencedrX   rX   rY   rO   ,  s   rO   c                 c   s<    t | |dur| V  	 |  V  q1 sw   Y  dS )a  Yields results from a function repeatedly until an exception is raised.

    Converts a call-until-exception interface to an iterator interface.
    Like ``iter(func, sentinel)``, but uses an exception instead of a sentinel
    to end the loop.

        >>> l = [0, 1, 2]
        >>> list(iter_except(l.pop, IndexError))
        [2, 1, 0]

    Multiple exceptions can be specified as a stopping condition:

        >>> l = [1, 2, 3, '...', 4, 5, 6]
        >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
        [7, 6, 5]
        >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
        [4, 3, 2]
        >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
        []

    Nr   )rx   	exceptionrm   rX   rX   rY   r,   @  s   
r,   c                 C   s   t t|| |S )a  
    Returns the first true value in the iterable.

    If no true value is found, returns *default*

    If *pred* is not None, returns the first item for which
    ``pred(item) == True`` .

        >>> first_true(range(10))
        1
        >>> first_true(range(10), pred=lambda x: x > 5)
        6
        >>> first_true(range(10), default='missing', pred=lambda x: x > 9)
        'missing'

    )ri   filter)r_   rk   rp   rX   rX   rY   r'   ]  s   r'   r   r   c                 G   s$   dd |D |  }t dd |D S )a  Draw an item at random from each of the input iterables.

        >>> random_product('abc', range(4), 'XYZ')  # doctest:+SKIP
        ('c', 3, 'Z')

    If *repeat* is provided as a keyword argument, that many items will be
    drawn from each iterable.

        >>> random_product('abcd', range(4), repeat=2)  # doctest:+SKIP
        ('a', 2, 'd', 3)

    This equivalent to taking a random selection from
    ``itertools.product(*args, **kwarg)``.

    c                 S   s   g | ]}t |qS rX   rs   r   poolrX   rX   rY   
<listcomp>  s    z"random_product.<locals>.<listcomp>c                 s   s    | ]}t |V  qd S rU   )r   r   rX   rX   rY   r         z!random_product.<locals>.<genexpr>r   )r   rz   poolsrX   rX   rY   rB   q  s   rB   c                 C   s*   t | }|du rt|n|}t t||S )ab  Return a random *r* length permutation of the elements in *iterable*.

    If *r* is not specified or is ``None``, then *r* defaults to the length of
    *iterable*.

        >>> random_permutation(range(5))  # doctest:+SKIP
        (3, 4, 0, 1, 2)

    This equivalent to taking a random selection from
    ``itertools.permutations(iterable, r)``.

    N)rs   rg   r   )r_   r   r   rX   rX   rY   rA     s   rA   c                    s8   t |  t }ttt||}t  fdd|D S )zReturn a random *r* length subsequence of the elements in *iterable*.

        >>> random_combination(range(5), 3)  # doctest:+SKIP
        (2, 3, 4)

    This equivalent to taking a random selection from
    ``itertools.combinations(iterable, r)``.

    c                 3       | ]} | V  qd S rU   rX   r   r   r   rX   rY   r     r   z%random_combination.<locals>.<genexpr>)rs   rg   r   r   r   )r_   r   r^   indicesrX   r   rY   r@     s   
r@   c                    s@   t | t t fddt|D }t fdd|D S )aS  Return a random *r* length subsequence of elements in *iterable*,
    allowing individual elements to be repeated.

        >>> random_combination_with_replacement(range(3), 5) # doctest:+SKIP
        (0, 0, 1, 2, 2)

    This equivalent to taking a random selection from
    ``itertools.combinations_with_replacement(iterable, r)``.

    c                 3   s    | ]}t  V  qd S rU   )r   r   r^   rX   rY   r     r   z6random_combination_with_replacement.<locals>.<genexpr>c                 3   r   rU   rX   r   r   rX   rY   r     r   )rs   rg   r   r   )r_   r   r   rX   )r^   r   rY   r?     s   r?   c           	      C   s   t | }t|}|dk s||krtd}t||| }td|d D ]}||| |  | }q"|dk r7||7 }|dk s?||krAtg }|ry|| | |d |d }}}||krn||8 }|||  | |d }}||ksY||d|   |sEt |S )a  Equivalent to ``list(combinations(iterable, r))[index]``.

    The subsequences of *iterable* that are of length *r* can be ordered
    lexicographically. :func:`nth_combination` computes the subsequence at
    sort position *index* directly, without computing the previous
    subsequences.

        >>> nth_combination(range(5), 3, 5)
        (0, 3, 4)

    ``ValueError`` will be raised If *r* is negative or greater than the length
    of *iterable*.
    ``IndexError`` will be raised if the given *index* is invalid.
    r   r   r   )rs   rg   r   minr   
IndexErrorr   )	r_   r   indexr   r^   cr   r   resultrX   rX   rY   r3     s,    r3   c                 C   s   t | g|S )a  Yield *value*, followed by the elements in *iterator*.

        >>> value = '0'
        >>> iterator = ['1', '2', '3']
        >>> list(prepend(value, iterator))
        ['0', '1', '2', '3']

    To prepend multiple values, see :func:`itertools.chain`
    or :func:`value_chain`.

    )r	   )valuerj   rX   rX   rY   r<     s   r<   c                 c   sb    t |ddd }t|}tdg|d| }t| td|d D ]}|| t||V  q!dS )u}  Discrete linear convolution of two iterables.
    Equivalent to polynomial multiplication.

    For example, multiplying ``(x² -x - 20)`` by ``(x - 3)``
    gives ``(x³ -4x² -17x + 60)``.

        >>> list(convolve([1, -1, -20], [1, -3]))
        [1, -4, -17, 60]

    Examples of popular kinds of kernels:

    * The kernel ``[0.25, 0.25, 0.25, 0.25]`` computes a moving average.
      For image data, this blurs the image and reduces noise.
    * The kernel ``[1/2, 0, -1/2]`` estimates the first derivative of
      a function evaluated at evenly spaced inputs.
    * The kernel ``[1, -2, 1]`` estimates the second derivative of a
      function evaluated at evenly spaced inputs.

    Convolutions are mathematically commutative; however, the inputs are
    evaluated differently.  The signal is consumed lazily and can be
    infinite. The kernel is fully consumed before the calculations begin.

    Supports all numeric types: int, float, complex, Decimal, Fraction.

    References:

    * Article:  https://betterexplained.com/articles/intuitive-convolution/
    * Video by 3Blue1Brown:  https://www.youtube.com/watch?v=KuXjwB4LzSA

    Nr   r   rc   r   )rs   rg   r   r	   r   r   _sumprod)signalkernelr^   windowrV   rX   rX   rY   r%     s   #
r%   c                    s0   t   g  fdd}t }| |fS )a  A variant of :func:`takewhile` that allows complete access to the
    remainder of the iterator.

         >>> it = iter('ABCdEfGhI')
         >>> all_upper, remainder = before_and_after(str.isupper, it)
         >>> ''.join(all_upper)
         'ABC'
         >>> ''.join(remainder) # takewhile() would lose the 'd'
         'dEfGhI'

    Note that the first iterator must be fully consumed before the second
    iterator can generate valid results.
    c                  3   s.     D ]} | r| V  q |   d S d S rU   )r   )elemr   	predicate
transitionrX   rY   true_iterator-  s   
z'before_and_after.<locals>.true_iterator)rh   r	   )r   r   r   remainder_iteratorrX   r   rY   r#     s
   

r#   c                 C   s:   t | d\}}}t|d t|d t|d t|||S )zReturn overlapping triplets from *iterable*.

    >>> list(triplewise('ABCDE'))
    [('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E')]

    r   Nr{   )r_   r   r   t3rX   rX   rY   rN   =  s
   	


rN   c                 C   s6   t | |}t|D ]\}}tt|||d  q	t| S rU   )r   r   ri   r   r|   )r_   r^   r   r   rj   rX   rX   rY   _sliding_window_isliceM  s   
r   c                 c   sB    t | }tt||d |d}|D ]}|| t|V  qd S )Nr   rc   )rh   r   r   r   rs   )r_   r^   rj   r   rV   rX   rX   rY   _sliding_window_dequeU  s   
r   c                 C   sR   |dkr	t | |S |dkrt| |S |dkrt| S |dkr"t| S td| )aY  Return a sliding window of width *n* over *iterable*.

        >>> list(sliding_window(range(6), 4))
        [(0, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 5)]

    If *iterable* has fewer than *n* items, then nothing is yielded:

        >>> list(sliding_window(range(3), 4))
        []

    For a variant with more features, see :func:`windowed`.
          r   zn should be at least one, not )r   r   r6   r|   r   rt   rX   rX   rY   rF   ^  s   

rF   c                 C   s4   t | }ttttt|d d}ttt||S )zReturn all contiguous non-empty subslices of *iterable*.

        >>> list(subslices('ABC'))
        [['A'], ['A', 'B'], ['A', 'B', 'C'], ['B'], ['B', 'C'], ['C']]

    This is similar to :func:`substrings`, but emits items in a different
    order.
    r   r   )	r\   r   slicer
   r   rg   r`   r   r   )r_   seqslicesrX   rX   rY   rG   w  s   	rG   c                 C   s(   dg}| D ]}t t|d| f}q|S )u  Compute a polynomial's coefficients from its roots.

    >>> roots = [5, -4, 3]            # (x - 5) * (x + 4) * (x - 3)
    >>> polynomial_from_roots(roots)  # x³ - 4 x² - 17 x + 60
    [1, -4, -17, 60]

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )r\   r%   )rootspolyrootrX   rX   rY   r9     s   r9   c                 c   s    t | dd}|du r(t| ||}t||D ]\}}||u s"||kr%|V  qdS |du r0t| n|}|d }tt 	 |||d | }V  q<1 sKw   Y  dS )a  Yield the index of each place in *iterable* that *value* occurs,
    beginning with index *start* and ending before index *stop*.


    >>> list(iter_index('AABCADEAF', 'A'))
    [0, 1, 4, 7]
    >>> list(iter_index('AABCADEAF', 'A', 1))  # start index is inclusive
    [1, 4, 7]
    >>> list(iter_index('AABCADEAF', 'A', 1, 7))  # stop index is not inclusive
    [1, 4]

    The behavior for non-scalar *values* matches the built-in Python types.

    >>> list(iter_index('ABCDABCD', 'AB'))
    [0, 4]
    >>> list(iter_index([0, 1, 2, 3, 0, 1, 2, 3], [0, 1]))
    []
    >>> list(iter_index([[0, 1], [2, 3], [0, 1], [2, 3]], [0, 1]))
    [0, 2]

    See :func:`locate` for a more general means of finding the indexes
    associated with particular values.

    r   Nr   )getattrr   r   rg   r   r   )r_   r   rb   stop	seq_indexrj   r   r   rX   rX   rY   r-     s    
r-   c                 c   s    | dkrdV  d}t d| d  }t|d|t| d dD ])}t|d||| E dH  ttt|| | || ||| | || < || }qt|d|E dH  dS )zeYield the primes less than n.

    >>> list(sieve(30))
    [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

    r   r   )r   r   r   )r   N)	bytearrayr-   r   bytesrg   r   )r^   rb   datar   rX   rX   rY   rE     s   
.
rE   c                c   sd    |dk r	t dt| }tt|| }r0|r"t||kr"t d|V  tt|| }sdS dS )a  Batch data into tuples of length *n*. If the number of items in
    *iterable* is not divisible by *n*:
    * The last batch will be shorter if *strict* is ``False``.
    * :exc:`ValueError` will be raised if *strict* is ``True``.

    >>> list(batched('ABCDEFG', 3))
    [('A', 'B', 'C'), ('D', 'E', 'F'), ('G',)]

    On Python 3.13 and above, this is an alias for :func:`itertools.batched`.
    r   zn must be at least onezbatched(): incomplete batchN)r   rh   rs   r   rg   )r_   r^   rS   rj   batchrX   rX   rY   _batched  s   r   i )r"   c                C   s   t | ||dS )NrR   )itertools_batched)r_   r^   rS   rX   rX   rY   r"     s   r"   c                 C   s   t |  S )a  Swap the rows and columns of the input matrix.

    >>> list(transpose([(1, 2, 3), (11, 22, 33)]))
    [(1, 11), (2, 22), (3, 33)]

    The caller should ensure that the dimensions of the input are compatible.
    If the input is empty, no output will be produced.
    )_zip_strictr   rX   rX   rY   rM     s   	rM   c                 C   s   t t| |S )zReshape the 2-D input *matrix* to have a column count given by *cols*.

    >>> matrix = [(0, 1), (2, 3), (4, 5)]
    >>> cols = 3
    >>> list(reshape(matrix, cols))
    [(0, 1, 2), (3, 4, 5)]
    )r"   r	   rr   )matrixcolsrX   rX   rY   r>     s   r>   c                 C   s&   t |d }tttt| t||S )a#  Multiply two matrices.

    >>> list(matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]))
    [(49, 80), (41, 60)]

    The caller should ensure that the dimensions of the input matrices are
    compatible with each other.

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )rg   r"   r   r   r   rM   )m1m2r^   rX   rX   rY   r/     s   r/   c                 C   s   t d| D ]7}d }}d}|dkr4|| | |  }|| | |  }|| | |  }t|| | }|dks|| kr<|  S qtd)Nr   r   zprime or under 5)r   r   r   )r^   r~   rV   rW   drX   rX   rY   _factor_pollard  s   r      c                 c   s    | dk rdS t D ]}| | s|V  | | } | | rq	g }| dkr$| gng }|D ]} | dk s2t| r8||  q(t| }||| | f7 }q(t|E dH  dS )a  Yield the prime factors of n.

    >>> list(factor(360))
    [2, 2, 2, 3, 3, 5]

    Finds small factors with trial division.  Larger factors are
    either verified as prime with ``is_prime`` or split into
    smaller factors with Pollard's rho algorithm.
    r   Nr   i  )_primes_below_211r+   r   r   r   )r^   primeprimestodofactrX   rX   rY   r(   .  s"   r(   c                 C   s>   t | }|dkrt|dS ttt|tt|}t| |S )ad  Evaluate a polynomial at a specific value.

    Computes with better numeric stability than Horner's method.

    Evaluate ``x^3 - 4 * x^2 - 17 * x + 60`` at ``x = 2.5``:

    >>> coefficients = [1, -4, -17, 60]
    >>> x = 2.5
    >>> polynomial_eval(coefficients, x)
    8.125

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )rg   typer`   powr   reversedr   r   )coefficientsrV   r^   powersrX   rX   rY   r8   O  s
   
r8   c                 C   s   t t|  S )zReturn the sum of the squares of the input values.

    >>> sum_of_squares([10, 20, 30])
    1400

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    )r   r   r   rX   rX   rY   rH   d  s   rH   c                 C   s&   t | }ttd|}ttt| |S )uX  Compute the first derivative of a polynomial.

    Evaluate the derivative of ``x³ - 4 x² - 17 x + 60``:

    >>> coefficients = [1, -4, -17, 60]
    >>> derivative_coefficients = polynomial_derivative(coefficients)
    >>> derivative_coefficients
    [3, -8, -17]

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )rg   r  r   r\   r`   r   )r  r^   r  rX   rX   rY   r:   o  s   r:   c                 C   s"   t t| D ]}| | | 8 } q| S )u  Return the count of natural numbers up to *n* that are coprime with *n*.

    Euler's totient function φ(n) gives the number of totatives.
    Totative are integers k in the range 1 ≤ k ≤ n such that gcd(n, k) = 1.

    >>> n = 9
    >>> totient(n)
    6

    >>> totatives = [x for x in range(1, n) if gcd(n, x) == 1]
    >>> totatives
    [1, 2, 4, 5, 7, 8]
    >>> len(totatives)
    6

    Reference:  https://en.wikipedia.org/wiki/Euler%27s_totient_function

    )r   r(   )r^   r   rX   rX   rY   rL     s   rL   ))i  )r   )i )   I   )l   tT7 )r      =   )l   ay)r         iS_ )l   ;n>)r   r      r     )l   p)r   r   r
  r  r  r  )l            )r   iE  i$  in  i i= ik)l   %!HnfW )r   r   r
  r  r  r        r	     r  %   )   c                 C   sH   | d | A   d }| |? }d|> | | kr|d@ r|dks J ||fS )z#Return s, d such that 2**s * d == nr   r   )
bit_length)r^   r   r   rX   rX   rY   _shift_to_odd  s   $r  c                 C   s   | dkr| d@ rd|  kr| k sJ  J t | d \}}t||| }|dks.|| d kr0dS t|d D ]}|| |  }|| d krG dS q6dS )Nr   r   TF)r  r   r   )r^   baser   r   rV   _rX   rX   rY   _strong_probable_prime  s   ,r  c                    s    dk r dv S  d@ r  d r  d r  d r  d r  d s"d	S t D ]
\}} |k r. nq$ fd
dtdD }t fdd|D S )a  Return ``True`` if *n* is prime and ``False`` otherwise.

    Basic examples:

        >>> is_prime(37)
        True
        >>> is_prime(3 * 13)
        False
        >>> is_prime(18_446_744_073_709_551_557)
        True

    Find the next prime over one billion:

        >>> next(filter(is_prime, count(10**9)))
        1000000007

    Generate random primes up to 200 bits and up to 60 decimal digits:

        >>> from random import seed, randrange, getrandbits
        >>> seed(18675309)

        >>> next(filter(is_prime, map(getrandbits, repeat(200))))
        893303929355758292373272075469392561129886005037663238028407

        >>> next(filter(is_prime, map(randrange, repeat(10**60))))
        269638077304026462407872868003560484232362454342414618963649

    This function is exact for values of *n* below 10**24.  For larger inputs,
    the probabilistic Miller-Rabin primality test has a less than 1 in 2**128
    chance of a false positive.
    r  >   r   r   r
  r  r  r  r   r   r
  r  r  r  Fc                 3   s    | ]
}t d  d V  qdS )r   r   N)_private_randranger   r   rX   rY   r     s    zis_prime.<locals>.<genexpr>@   c                 3   r   rU   )r  )r   r  r   rX   rY   r     r   )_perfect_testsr   all)r^   limitbasesrX   r   rY   r+     s   !0r+   c                 C   s
   t d| S )zReturns an iterable with *n* elements for efficient looping.
    Like ``range(n)`` but doesn't create integers.

    >>> i = 0
    >>> for _ in loops(5):
    ...     i += 1
    >>> i
    5

    Nr   r   rX   rX   rY   r.     s   
r.   c                  G   s   t ttt| | S )u  Number of distinct arrangements of a multiset.

    The expression ``multinomial(3, 4, 2)`` has several equivalent
    interpretations:

    * In the expansion of ``(a + b + c)⁹``, the coefficient of the
      ``a³b⁴c²`` term is 1260.

    * There are 1260 distinct ways to arrange 9 balls consisting of 3 reds, 4
      greens, and 2 blues.

    * There are 1260 unique ways to place 9 distinct objects into three bins
      with sizes 3, 4, and 2.

    The :func:`multinomial` function computes the length of
    :func:`distinct_permutations`.  For example, there are 83,160 distinct
    anagrams of the word "abracadabra":

        >>> from more_itertools import distinct_permutations, ilen
        >>> ilen(distinct_permutations('abracadabra'))
        83160

    This can be computed directly from the letter counts, 5a 2b 2r 1c 1d:

        >>> from collections import Counter
        >>> list(Counter('abracadabra').values())
        [5, 2, 2, 1, 1]
        >>> multinomial(5, 2, 1, 1, 2)
        83160

    A binomial coefficient is a special case of multinomial where there are
    only two categories.  For example, the number of ways to arrange 12 balls
    with 5 reds and 7 blues is ``multinomial(5, 7)`` or ``math.comb(12, 5)``.

    When the multiplicities are all just 1, :func:`multinomial`
    is a special case of ``math.factorial`` so that
    ``multinomial(1, 1, 1, 1, 1, 1, 1) == math.factorial(7)``.

    Reference:  https://en.wikipedia.org/wiki/Multinomial_theorem

    )r   r`   r   r   )countsrX   rX   rY   r0     s   *r0   )r   rU   )r   N)NF)NN)r   N)u__doc__randomcollectionsr   
contextlibr   collections.abcr   	functoolsr   r   	itertoolsr   r	   r
   r   r   r   r   r   r   r   r   r   r   mathr   r   r   r   operatorr   r   r   r   r   r   r   sysr    __all__objectr   r|   r   r   rT   r   ImportErrorrK   rI   rJ   r$   r2   r!   r   r=   r5   r4   r1   r&   r)   rC   r   r6   r   r   r   r   r   r*   rD   r7   r;   rP   rQ   rO   r,   r'   rB   rA   r@   r?   r3   r<   r%   r#   rN   r   r   rF   rG   r9   r-   rE   r   r"   r   rM   r>   r/   r   rs   r   r(   r8   rH   r:   rL   r  r  r  Randomr  r+   r.   r0   rX   rX   rX   rY   <module>   s    
<4


(




(

-



*+!	
)
!

0