o
    5hl                     @   s  d dl Z d dlZd dlmZ d dlmZmZmZmZm	Z	 ddl
mZ dZe jdkr-eded	eZd	ed
Zeedr@edG dd deZe Zed dkrnd dlmZmZmZmZ G dd deZdd Zeej_n
d dlmZ dd Zded Z G dd deZ!dS )    N)is_native_int)backendload_libc_ulongc_size_tc_uint8_ptr   )IntegerBasea  typedef unsigned long UNIX_ULONG;
        typedef struct { int a; int b; void *c; } MPZ;
        typedef MPZ mpz_t[1];
        typedef UNIX_ULONG mp_bitcnt_t;

        void __gmpz_init (mpz_t x);
        void __gmpz_init_set (mpz_t rop, const mpz_t op);
        void __gmpz_init_set_ui (mpz_t rop, UNIX_ULONG op);

        UNIX_ULONG __gmpz_get_ui (const mpz_t op);
        void __gmpz_set (mpz_t rop, const mpz_t op);
        void __gmpz_set_ui (mpz_t rop, UNIX_ULONG op);
        void __gmpz_add (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_add_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_sub_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_addmul (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_addmul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_submul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_import (mpz_t rop, size_t count, int order, size_t size,
                            int endian, size_t nails, const void *op);
        void * __gmpz_export (void *rop, size_t *countp, int order,
                              size_t size,
                              int endian, size_t nails, const mpz_t op);
        size_t __gmpz_sizeinbase (const mpz_t op, int base);
        void __gmpz_sub (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_mul (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_mul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        int __gmpz_cmp (const mpz_t op1, const mpz_t op2);
        void __gmpz_powm (mpz_t rop, const mpz_t base, const mpz_t exp, const
                          mpz_t mod);
        void __gmpz_powm_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp,
                             const mpz_t mod);
        void __gmpz_pow_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp);
        void __gmpz_sqrt(mpz_t rop, const mpz_t op);
        void __gmpz_mod (mpz_t r, const mpz_t n, const mpz_t d);
        void __gmpz_neg (mpz_t rop, const mpz_t op);
        void __gmpz_abs (mpz_t rop, const mpz_t op);
        void __gmpz_and (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_ior (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_clear (mpz_t x);
        void __gmpz_tdiv_q_2exp (mpz_t q, const mpz_t n, mp_bitcnt_t b);
        void __gmpz_fdiv_q (mpz_t q, const mpz_t n, const mpz_t d);
        void __gmpz_mul_2exp (mpz_t rop, const mpz_t op1, mp_bitcnt_t op2);
        int __gmpz_tstbit (const mpz_t op, mp_bitcnt_t bit_index);
        int __gmpz_perfect_square_p (const mpz_t op);
        int __gmpz_jacobi (const mpz_t a, const mpz_t b);
        void __gmpz_gcd (mpz_t rop, const mpz_t op1, const mpz_t op2);
        UNIX_ULONG __gmpz_gcd_ui (mpz_t rop, const mpz_t op1,
                                     UNIX_ULONG op2);
        void __gmpz_lcm (mpz_t rop, const mpz_t op1, const mpz_t op2);
        int __gmpz_invert (mpz_t rop, const mpz_t op1, const mpz_t op2);
        int __gmpz_divisible_p (const mpz_t n, const mpz_t d);
        int __gmpz_divisible_ui_p (const mpz_t n, UNIX_ULONG d);

        size_t __gmpz_size (const mpz_t op);
        UNIX_ULONG __gmpz_getlimbn (const mpz_t op, size_t n);
        win32zNot using GMP on Windowsgmp)libraryapi__mpir_versionzMPIR library detectedc                   @   s   e Zd Zdd ZdS )_GMPc                 C   s^   | drd|dd   }n| drd|dd   }ntd| tt|}t| || |S )Nmpz___gmpz_   gmp___gmp_zAttribute %s is invalid)
startswithAttributeErrorgetattrlibsetattr)selfname	func_namefunc r   k/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/Crypto/Math/_IntegerGMP.py__getattr__p   s   


z_GMP.__getattr__N)__name__
__module____qualname__r    r   r   r   r   r   n   s    r   r   ctypes)	Structurec_intc_void_pbyrefc                   @   s"   e Zd ZdefdefdefgZdS )_MPZ	_mp_alloc_mp_size_mp_dN)r!   r"   r#   r&   r'   _fields_r   r   r   r   r)      s
    r)   c                   C   s
   t t S N)r(   r)   r   r   r   r   new_mpz      
r/   )ffic                   C   s
   t dS )NzMPZ*)r1   newr   r   r   r   r/      r0      Pc                   @   s  e Zd ZdZe Zeeed dd Z	dd Z
dd Zd	d
 Zdd Zdd ZdmddZednddZdd Zdd Zdd Zdd Zdd Zdd Zd d! Zd"d# ZeZd$d% Zd&d' Zd(d) Zd*d+ Zd,d- Zd.d/ Z dod1d2Z!dod3d4Z"d5d6 Z#dod7d8Z$d9d: Z%d;d< Z&d=d> Z'd?d@ Z(dAdB Z)dCdD Z*dEdF Z+dGdH Z,dIdJ Z-dKdL Z.dMdN Z/dOdP Z0dQdR Z1dSdT Z2dUdV Z3dWdX Z4dYdZ Z5d[d\ Z6d]d^ Z7d_d` Z8dadb Z9dcdd Z:dedf Z;edgdh Z<edidj Z=dkdl Z>d0S )p
IntegerGMPz#A fast, arbitrary precision integerr   c              	   C   s6  t  | _d| _t|trtdt|rt| j d| _|dkr#dS t  }t| zG|dk}t	|}|
 d d d }|dkrl|d }t|td||d ? @  t||t|d  t| j| j| |dksBW t| nt| w |st| j| j dS dS t|trt| j|j d| _dS t)	z*Initialize the integer to the given value.Fz-A floating point type is not a natural numberTr   Nr           )r/   _mpz_p_initialized
isinstancefloat
ValueErrorr   _gmpmpz_initabs
bit_length
mpz_set_uir   mpz_mul_2expmpz_add	mpz_clearmpz_negr5   mpz_init_setNotImplementedError)r   valuetmppositivereduceslotsr   r   r   __init__   s@   



zIntegerGMP.__init__c              	   C   s   t  }t|| j z9d}d}t|| jdkr=t|d@ }|||d > O }t||td |d }t|| jdksW t	| nt	| w | dk rQ| }t
|S )Nr   r7   r6   r   )r/   r=   rF   r8   mpz_cmp_zero_mpz_p
mpz_get_uimpz_tdiv_q_2expr   rD   int)r   rI   rH   slotlsbr   r   r   __int__   s    zIntegerGMP.__int__c                 C      t t| S r.   )strrR   r   r   r   r   __str__      zIntegerGMP.__str__c                 C   s   dt |  S )NzInteger(%s))rW   rX   r   r   r   __repr__   rZ   zIntegerGMP.__repr__c                 C   rV   r.   )hexrR   rX   r   r   r   __hex__   rZ   zIntegerGMP.__hex__c                 C   s   t | S r.   )rR   rX   r   r   r   	__index__   s   zIntegerGMP.__index__bigc                    s@  dk rt dtj tdkrd}td |d d  ntdkr0d	}td |d
 d  nt d fddt D }tjd|   g|R  }t	|| }|dkr]|
d}n$|dkrv|d| d| krot d||d }n|dk rd|  | }|dkr|ddd }n	|dkrnt dt	|dkrd}|S )a  Convert the number into a byte string.

        This method encodes the number in network order and prepends
        as many zero bytes as required. It only works for non-negative
        values.

        :Parameters:
          block_size : integer
            The exact size the output byte string must have.
            If zero, the string has the minimal length.
          byteorder : string
            'big' for big-endian integers (default), 'little' for litte-endian.
        :Returns:
          A byte string.
        :Raise ValueError:
          If the value is negative or if ``block_size`` is
          provided and the length of the byte string would exceed it.
        r   .Conversion only valid for non-negative numbersr6   Lr      r   @   Q   r3   zUnknown limb sizec                    s"   g | ]}t j | d  qS )r   )r=   mpz_getlimbnr8   ).0i	num_limbsr   r   r   
<listcomp>  s   " z'IntegerGMP.to_bytes.<locals>.<listcomp>>    Nz@Number is too big to convert to byte string of prescribed lengthlittler_   Incorrect byteorder)r<   r=   mpz_sizer8   	_sys_bitsmaxrangestructpacklenlstrip)r   
block_size	byteorderspcharlimbsresult
cutoff_lenr   ri   r   to_bytes   s:   zIntegerGMP.to_bytesc              
   C   sd   t d}|dkr	n|dkrt| } |   ntdt|jtt| dtddtdt	|  |S )a  Convert a byte string into a number.

        :Parameters:
          byte_string : byte string
            The input number, encoded in network order.
            It can only be non-negative.
          byteorder : string
            'big' for big-endian integers (default), 'little' for litte-endian.

        :Return:
          The ``Integer`` object carrying the same value as the input.
        r   r_   rn   rp   r   )
r5   	bytearrayreverser<   r=   
mpz_importr8   r   rw   r   )byte_stringrz   r}   r   r   r   
from_bytes(  s"   

zIntegerGMP.from_bytesc                 C   s    t |ts	t|}|| j|jS r.   )r:   r5   r8   )r   r   termr   r   r   _apply_and_returnI  s   
zIntegerGMP._apply_and_returnc                 C   s(   t |tst|sdS | tj|dkS )NFr   r:   r5   r   r   r=   rN   r   r   r   r   r   __eq__N     zIntegerGMP.__eq__c                 C   s(   t |tst|sdS | tj|dkS )NTr   r   r   r   r   r   __ne__S  r   zIntegerGMP.__ne__c                 C   s   |  tj|dk S Nr   r   r=   rN   r   r   r   r   __lt__X     zIntegerGMP.__lt__c                 C   s   |  tj|dkS r   r   r   r   r   r   __le__[  r   zIntegerGMP.__le__c                 C   s   |  tj|dkS r   r   r   r   r   r   __gt__^  r   zIntegerGMP.__gt__c                 C   s   |  tj|dkS r   r   r   r   r   r   __ge__a  r   zIntegerGMP.__ge__c                 C   s   t | j| jdkS r   r=   rN   r8   rO   rX   r   r   r   __nonzero__d     zIntegerGMP.__nonzero__c                 C   s   t | j| jdk S r   r   rX   r   r   r   is_negativeh  r   zIntegerGMP.is_negativec                 C   N   t d}t|t szt |}W n ty   t Y S w t|j| j|j |S r   )r5   r:   rG   NotImplementedr=   rC   r8   r   r   r}   r   r   r   __add__l     
zIntegerGMP.__add__c                 C   r   r   )r5   r:   rG   r   r=   mpz_subr8   r   r   r   r   __sub__x  r   zIntegerGMP.__sub__c                 C   r   r   )r5   r:   rG   r   r=   mpz_mulr8   r   r   r   r   __mul__  r   zIntegerGMP.__mul__c                 C   sN   t |ts	t|}t|j| jdkrtdtd}t|j| j|j |S )Nr   Division by zero)r:   r5   r=   rN   r8   rO   ZeroDivisionError
mpz_fdiv_q)r   divisorr}   r   r   r   __floordiv__  s   
zIntegerGMP.__floordiv__c                 C   sb   t |ts	t|}t|j| j}|dkrtd|dk r!tdtd}t|j| j|j |S Nr   r   Modulus must be positive	r:   r5   r=   rN   r8   rO   r   r<   mpz_mod)r   r   compr}   r   r   r   __mod__  s   
zIntegerGMP.__mod__Nc                 C   s   |d u r#|dk rt d|dkrt dt| j| jtt| | S t|ts,t|}|s2td|	 r:t dt
|r^|dk rFt d|dk rYt| j| jt||j | S t|}n|	 rft dt| j| j|j|j | S )Nr   zExponent must not be negative   zExponent is too bigr   r      )r<   r=   
mpz_pow_uir8   r   rR   r:   r5   r   r   r   mpz_powm_uimpz_powm)r   exponentmodulusr   r   r   inplace_pow  sF   


zIntegerGMP.inplace_powc                 C   s   t | }|||S r.   )r5   r   )r   r   r   r}   r   r   r   __pow__  s   zIntegerGMP.__pow__c                 C   s   t d}t|j| j |S r   )r5   r=   mpz_absr8   )r   r}   r   r   r   __abs__  s   zIntegerGMP.__abs__c                 C   sh   |du r| dk rt dtd}t|j| j |S |dkr"t dt|}t| t| | |}|S )zGReturn the largest Integer that does not
        exceed the square rootNr   zSquare root of negative valuer   )r<   r5   r=   mpz_sqrtr8   rR   _tonelli_shanksr   r   r}   r   r   r   sqrt  s   zIntegerGMP.sqrtc                 C      t |r;d|  krdk rn nt| j| jt| | S d|  k r'dk r7n nt| j| jt|  | S t|}t| j| j|j | S Nr   r    )r   r=   
mpz_add_uir8   r   
mpz_sub_uir5   rC   r   r   r   r   __iadd__  &   zIntegerGMP.__iadd__c                 C   r   r   )r   r=   r   r8   r   r   r5   r   r   r   r   r   __isub__  r   zIntegerGMP.__isub__c                 C   s   t |rCd|  krdk rn nt| j| jt| | S d|  k r'dk r?n nt| j| jt|  t| j| j | S t|}t| j| j|j | S r   )r   r=   
mpz_mul_uir8   r   rE   r5   r   r   r   r   r   __imul__  s(   zIntegerGMP.__imul__c                 C   sZ   t |ts	t|}t|j|j}|dkrtd|dk r!tdt| j| j|j | S r   r   )r   r   r   r   r   r   __imod__$  s   
zIntegerGMP.__imod__c                 C   2   t d}t|t st |}t|j| j|j |S r   )r5   r:   r=   mpz_andr8   r   r   r   r   __and__3     
zIntegerGMP.__and__c                 C   r   r   )r5   r:   r=   mpz_iorr8   r   r   r   r   __or__<  r   zIntegerGMP.__or__c                 C   sN   t d}|dk rtd|dkr| dk rdS dS t|j| jtt| |S Nr   znegative shift countr   ro   )r5   r<   r=   rQ   r8   r   rR   r   posr}   r   r   r   
__rshift__E  s   
zIntegerGMP.__rshift__c                 C   sF   |dk rt d|dkr| dk rdS dS t| j| jtt| | S r   )r<   r=   rQ   r8   r   rR   r   r   r   r   r   __irshift__S  s   
zIntegerGMP.__irshift__c                 C   sJ   t d}d|  krdk std tdt|j| jtt| |S Nr   r   zIncorrect shift count)r5   r<   r=   rB   r8   r   rR   r   r   r   r   
__lshift__`  s   
zIntegerGMP.__lshift__c                 C   sB   d|  krdk st d t dt| j| jtt| | S r   )r<   r=   rB   r8   r   rR   r   r   r   r   __ilshift__i  s   
zIntegerGMP.__ilshift__c                 C   sF   | dk rt d|dk rt d|dkrdS tt| jtt|S )zPReturn True if the n-th bit is set to 1.
        Bit 0 is the least significant.r   z)no bit representation for negative valuesznegative bit countr   )r<   boolr=   
mpz_tstbitr8   r   rR   )r   nr   r   r   get_bitq  s   

zIntegerGMP.get_bitc                 C   s   t | jddkS )Nr   r   r=   r   r8   rX   r   r   r   is_odd  r   zIntegerGMP.is_oddc                 C   s   t | jddkS r   r   rX   r   r   r   is_even  r   zIntegerGMP.is_evenc                 C   s   | dk rt dt| jdS )z=Return the minimum number of bits that can encode the number.r   r`      )r<   r=   mpz_sizeinbaser8   rX   r   r   r   size_in_bits  s   zIntegerGMP.size_in_bitsc                 C   s   |   d d d S )z>Return the minimum number of bytes that can encode the number.r   r3   )r   rX   r   r   r   size_in_bytes  s   zIntegerGMP.size_in_bytesc                 C   s   t | jdkS r   )r=   mpz_perfect_square_pr8   rX   r   r   r   is_perfect_square  s   zIntegerGMP.is_perfect_squarec                 C   sb   t |r#d|  k rdk rn nt| jt|rtddS t|}t| j|jr/tddS )z3Raise an exception if the small prime is a divisor.r   r   zThe value is compositeN)r   r=   mpz_divisible_ui_pr8   r   r<   r5   mpz_divisible_p)r   small_primer   r   r   fail_if_divisible_by  s   zIntegerGMP.fail_if_divisible_byc                 C   s   t |ts	t|}t|rDd|  k rdk r&n nt| j|jt| | S d|  k r0dk r@n nt| j|jt|  | S t|}t| j|j|j | S )z/Increment the number by the product of a and b.r   r   r   )	r:   r5   r   r=   mpz_addmul_uir8   r   mpz_submul_ui
mpz_addmul)r   abr   r   r   multiply_accumulate  s*   
zIntegerGMP.multiply_accumulatec                 C   s&   t |ts	t|}t| j|j | S )z'Set the Integer to have the given value)r:   r5   r=   mpz_setr8   )r   sourcer   r   r   set  s   
zIntegerGMP.setc                 C   sf   t |ts	t|}t|j| j}|dkrtd|dk r!tdt| j| j|j}|s1td| S )zCompute the inverse of this number in the ring of
        modulo integers.

        Raise an exception if no inverse exists.
        r   Modulus cannot be zeror   z No inverse value can be computed)	r:   r5   r=   rN   r8   rO   r   r<   
mpz_invert)r   r   r   r}   r   r   r   inplace_inverse  s    
zIntegerGMP.inplace_inversec                 C   s   t | }|| |S r.   )r5   r   r   r   r   r   inverse  s   
zIntegerGMP.inversec                 C   sb   t d}t|r%d|  k rdk r!n nt|j| jt| |S t |}t|j| j|j |S )zUCompute the greatest common denominator between this
        number and another term.r   i  )r5   r   r=   
mpz_gcd_uir8   r   mpz_gcdr   r   r   r   gcd  s   zIntegerGMP.gcdc                 C   r   )zQCompute the least common multiplier between this
        number and another term.r   )r5   r:   r=   mpz_lcmr8   r   r   r   r   lcm  s
   
zIntegerGMP.lcmc                 C   sL   t | ts	t| } t |tst|}|dks| rtdt| j|jS )zCompute the Jacobi symbolr   z,n must be positive odd for the Jacobi symbol)r:   r5   r   r<   r=   
mpz_jacobir8   )r   r   r   r   r   jacobi_symbol  s   

zIntegerGMP.jacobi_symbolc                 C   s   t | ts	t| } t |tst|}t |tst|}|dk r#td|dkr+td|d@ dkr5td| | | }|| S )Nr   r   r   r   zOdd modulus is required)r:   r5   r<   r   r   r   )term1term2r   productr   r   r   _mult_modulo_bytes  s   


zIntegerGMP._mult_modulo_bytesc                 C   s>   z| j d ur| jrt| j  d | _ W d S  ty   Y d S w r.   )r8   r9   r=   rD   r   rX   r   r   r   __del__  s   
zIntegerGMP.__del__)r   r_   )r_   r.   )?r!   r"   r#   __doc__r/   rO   r=   mpz_init_set_uir   rM   rU   rY   r[   r]   r^   r   staticmethodr   r   r   r   r   r   r   r   r   __bool__r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r5      sx    *
< 

'
				


r5   )"sysru   Crypto.Util.py3compatr   Crypto.Util._raw_apir   r   r   r   r   _IntegerBaser	   gmp_defsplatformImportErrorr   implementationhasattrobjectr   r=   r$   r%   r&   r'   r(   r)   r/   rf   restyper1   calcsizerr   r5   r   r   r   r   <module>   s.   
:



