o
    h?i                     @   s   d dl Z d dlZd dlmZmZmZmZ d dlZddl	m
Z
 ddlmZmZmZmZ ddlmZmZmZmZ e rCd dlZddlmZ e rPd dlZdd	lmZ G d
d deZG dd deZeedddG dd deZeZdS )    N)ListOptionalTupleUnion   )BasicTokenizer)ExplicitEnumadd_end_docstringsis_tf_availableis_torch_available   )ArgumentHandlerChunkPipelineDatasetbuild_pipeline_init_args)/TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMESc                   @   s*   e Zd ZdZdeeee f fddZdS )"TokenClassificationArgumentHandlerz5
    Handles arguments for token classification.
    inputsc                 K   s   |d urt |ttfrt|dkrt|}t|}n"t |tr%|g}d}ntd ur.t |ts4t |tjr8|d fS td|	d}|r\t |trRt |d trR|g}t||kr\td||fS )Nr   r   zAt least one input is required.offset_mappingz;offset_mapping should have the same batch size as the input)

isinstancelisttuplelenstrr   typesGeneratorType
ValueErrorget)selfr   kwargs
batch_sizer    r"   /var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/transformers/pipelines/token_classification.py__call__    s    "


z+TokenClassificationArgumentHandler.__call__N)__name__
__module____qualname____doc__r   r   r   r$   r"   r"   r"   r#   r      s    r   c                   @   s$   e Zd ZdZdZdZdZdZdZdS )AggregationStrategyzDAll the valid aggregation strategies for TokenClassificationPipelinenonesimplefirstaveragemaxN)	r%   r&   r'   r(   NONESIMPLEFIRSTAVERAGEMAXr"   r"   r"   r#   r)   5   s    r)   T)has_tokenizera
  
        ignore_labels (`List[str]`, defaults to `["O"]`):
            A list of labels to ignore.
        grouped_entities (`bool`, *optional*, defaults to `False`):
            DEPRECATED, use `aggregation_strategy` instead. Whether or not to group the tokens corresponding to the
            same entity together in the predictions or not.
        stride (`int`, *optional*):
            If stride is provided, the pipeline is applied on all the text. The text is split into chunks of size
            model_max_length. Works only with fast tokenizers and `aggregation_strategy` different from `NONE`. The
            value of this argument defines the number of overlapping tokens between chunks. In other words, the model
            will shift forward by `tokenizer.model_max_length - stride` tokens each step.
        aggregation_strategy (`str`, *optional*, defaults to `"none"`):
            The strategy to fuse (or not) tokens based on the model prediction.

                - "none" : Will simply not do any aggregation and simply return raw results from the model
                - "simple" : Will attempt to group entities following the default schema. (A, B-TAG), (B, I-TAG), (C,
                  I-TAG), (D, B-TAG2) (E, B-TAG2) will end up being [{"word": ABC, "entity": "TAG"}, {"word": "D",
                  "entity": "TAG2"}, {"word": "E", "entity": "TAG2"}] Notice that two consecutive B tags will end up as
                  different entities. On word based languages, we might end up splitting words undesirably : Imagine
                  Microsoft being tagged as [{"word": "Micro", "entity": "ENTERPRISE"}, {"word": "soft", "entity":
                  "NAME"}]. Look for FIRST, MAX, AVERAGE for ways to mitigate that and disambiguate words (on languages
                  that support that meaning, which is basically tokens separated by a space). These mitigations will
                  only work on real words, "New york" might still be tagged with two different entities.
                - "first" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot
                  end up with different tags. Words will simply use the tag of the first token of the word when there
                  is ambiguity.
                - "average" : (works only on word based models) Will use the `SIMPLE` strategy except that words,
                  cannot end up with different tags. scores will be averaged first across tokens, and then the maximum
                  label is applied.
                - "max" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot
                  end up with different tags. Word entity will simply be the token with the maximum score.c                       s  e Zd ZdZdZe f fdd	Z						d.dee dee dee	 d	ee
eeef   d
ee f
ddZdeee
e f f fddZd/ddZdd Ze	jdfddZdd Zdedejdejd	ee
eeef   dejde	de
e fddZde
e de	de
e fd d!Zd"e
e de	defd#d$Zd"e
e de	de
e fd%d&Zd"e
e defd'd(Zd)edeeef fd*d+Zd"e
e de
e fd,d-Z  Z S )0TokenClassificationPipelineuv	  
    Named Entity Recognition pipeline using any `ModelForTokenClassification`. See the [named entity recognition
    examples](../task_summary#named-entity-recognition) for more information.

    Example:

    ```python
    >>> from transformers import pipeline

    >>> token_classifier = pipeline(model="Jean-Baptiste/camembert-ner", aggregation_strategy="simple")
    >>> sentence = "Je m'appelle jean-baptiste et je vis à montréal"
    >>> tokens = token_classifier(sentence)
    >>> tokens
    [{'entity_group': 'PER', 'score': 0.9931, 'word': 'jean-baptiste', 'start': 12, 'end': 26}, {'entity_group': 'LOC', 'score': 0.998, 'word': 'montréal', 'start': 38, 'end': 47}]

    >>> token = tokens[0]
    >>> # Start and end provide an easy way to highlight words in the original text.
    >>> sentence[token["start"] : token["end"]]
    ' jean-baptiste'

    >>> # Some models use the same idea to do part of speech.
    >>> syntaxer = pipeline(model="vblagoje/bert-english-uncased-finetuned-pos", aggregation_strategy="simple")
    >>> syntaxer("My name is Sarah and I live in London")
    [{'entity_group': 'PRON', 'score': 0.999, 'word': 'my', 'start': 0, 'end': 2}, {'entity_group': 'NOUN', 'score': 0.997, 'word': 'name', 'start': 3, 'end': 7}, {'entity_group': 'AUX', 'score': 0.994, 'word': 'is', 'start': 8, 'end': 10}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'sarah', 'start': 11, 'end': 16}, {'entity_group': 'CCONJ', 'score': 0.999, 'word': 'and', 'start': 17, 'end': 20}, {'entity_group': 'PRON', 'score': 0.999, 'word': 'i', 'start': 21, 'end': 22}, {'entity_group': 'VERB', 'score': 0.998, 'word': 'live', 'start': 23, 'end': 27}, {'entity_group': 'ADP', 'score': 0.999, 'word': 'in', 'start': 28, 'end': 30}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'london', 'start': 31, 'end': 37}]
    ```

    Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)

    This token recognition pipeline can currently be loaded from [`pipeline`] using the following task identifier:
    `"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous).

    The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the
    up-to-date list of available models on
    [huggingface.co/models](https://huggingface.co/models?filter=token-classification).
    	sequencesc                    s@   t  j|i | | | jdkrtnt tdd| _|| _d S )NtfF)do_lower_case)	super__init__check_model_type	frameworkr   r   r   _basic_tokenizer_args_parser)r   args_parserargsr    	__class__r"   r#   r:      s   

z$TokenClassificationPipeline.__init__Ngrouped_entitiesignore_subwordsaggregation_strategyr   stridec           
      C   sB  i }|d ur
||d< i }|d us|d urA|r|rt j}n|r$|s$t j}nt j}|d ur4td| d |d urAtd| d |d urft|trPt |  }|t jt j	t j
hv rb| jjsbtd||d< |d urn||d< |d ur|| jjkr|td|t jkrtd	| d
| jjrdd|d}	|	|d< ntd|i |fS )Nr   zl`grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to `aggregation_strategy="z"` instead.zk`ignore_subwords` is deprecated and will be removed in version v5.0.0, defaulted to `aggregation_strategy="z{Slow tokenizers cannot handle subwords. Please set the `aggregation_strategy` option to `"simple"` or use a fast tokenizer.rE   ignore_labelszl`stride` must be less than `tokenizer.model_max_length` (or even lower if the tokenizer adds special tokens)zI`stride` was provided to process all the text but `aggregation_strategy="z&"`, please select another one instead.T)return_overflowing_tokenspaddingrF   tokenizer_paramszm`stride` was provided to process all the text but you're using a slow tokenizer. Please use a fast tokenizer.)r)   r1   r0   r/   warningswarnr   r   upperr3   r2   	tokenizeris_fastr   model_max_length)
r   rG   rC   rD   rE   r   rF   preprocess_paramspostprocess_paramsrJ   r"   r"   r#   _sanitize_parameters   sr   	



z0TokenClassificationPipeline._sanitize_parametersr   c                    s6   | j |fi |\}}|r||d< t j|fi |S )a  
        Classify each token of the text(s) given as inputs.

        Args:
            inputs (`str` or `List[str]`):
                One or several texts (or one list of texts) for token classification.

        Return:
            A list or a list of list of `dict`: Each result comes as a list of dictionaries (one for each token in the
            corresponding input, or each entity if this pipeline was instantiated with an aggregation_strategy) with
            the following keys:

            - **word** (`str`) -- The token/word classified. This is obtained by decoding the selected tokens. If you
              want to have the exact string in the original sentence, use `start` and `end`.
            - **score** (`float`) -- The corresponding probability for `entity`.
            - **entity** (`str`) -- The entity predicted for that token/word (it is named *entity_group* when
              *aggregation_strategy* is not `"none"`.
            - **index** (`int`, only present when `aggregation_strategy="none"`) -- The index of the corresponding
              token in the sentence.
            - **start** (`int`, *optional*) -- The index of the start of the corresponding entity in the sentence. Only
              exists if the offsets are available within the tokenizer
            - **end** (`int`, *optional*) -- The index of the end of the corresponding entity in the sentence. Only
              exists if the offsets are available within the tokenizer
        r   )r>   r9   r$   )r   r   r    _inputsr   rA   r"   r#   r$      s   z$TokenClassificationPipeline.__call__c           	      +   s    | di }| jjr| jjdkrdnd}| j|f| j|d| jjd|}| dd  t|d }t|D ]; | jdkrI fd	d
| D }n fdd
| D }|d ur\||d<  dkrb|nd |d<  |d k|d< |V  q6d S )NrJ   r   TF)return_tensors
truncationreturn_special_tokens_maskreturn_offsets_mappingoverflow_to_sample_mapping	input_idsr7   c                    s"   i | ]\}}|t |  d qS r   )r7   expand_dims.0kvir"   r#   
<dictcomp>  s   " z:TokenClassificationPipeline.preprocess.<locals>.<dictcomp>c                    s    i | ]\}}||   d qS r[   )	unsqueezer]   ra   r"   r#   rc     s     r   sentencer   is_last)poprN   rP   r<   rO   r   rangeitems)	r   re   r   rQ   rJ   rV   r   
num_chunksmodel_inputsr"   ra   r#   
preprocess   s2   
z&TokenClassificationPipeline.preprocessc                 C   s   | d}| dd }| d}| d}| jdkr%| jd	i |d }n| jd	i |}t|tr6|d n|d }|||||d|S )
Nspecial_tokens_maskr   re   rf   r7   r   logits)rn   rm   r   re   rf   r"   )rg   r<   modelr   dict)r   rk   rm   r   re   rf   rn   outputr"   r"   r#   _forward  s    



z$TokenClassificationPipeline._forwardc              	      s^   d u rdg g }|D ]}| j dkr,|d d jtjtjfv r,|d d tj }n|d d  }|d d }|d d }|d d urL|d d nd }	|d d  }
tj	|d	d
d}t
|| }||jd	d
d }| j dkr| }|	d ur|	 nd }	| ||||	|
|}| ||} fdd|D }|| qt|}|dkr| |}|S )NOptrn   r   re   rZ   r   rm   T)axiskeepdimsr7   c                    s0   g | ]}| d d vr| dd vr|qS )entityNentity_group)r   r^   rx   rG   r"   r#   
<listcomp>I  s    z;TokenClassificationPipeline.postprocess.<locals>.<listcomp>r   )r<   dtypetorchbfloat16float16tofloat32numpynpr.   expsumgather_pre_entities	aggregateextendr   aggregate_overlapping_entities)r   all_outputsrE   rG   all_entitiesmodel_outputsrn   re   rZ   r   rm   maxesshifted_expscorespre_entitiesrC   entitiesrj   r"   r{   r#   postprocess+  s<   $


z'TokenClassificationPipeline.postprocessc                 C   s   t |dkr|S t|dd d}g }|d }|D ]A}|d |d   kr*|d k rRn n&|d |d  }|d |d  }||krC|}q||krQ|d |d krQ|}q|| |}q|| |S )Nr   c                 S   s   | d S )Nstartr"   )xr"   r"   r#   <lambda>X  s    zLTokenClassificationPipeline.aggregate_overlapping_entities.<locals>.<lambda>keyr   endscore)r   sortedappend)r   r   aggregated_entitiesprevious_entityrx   current_lengthprevious_lengthr"   r"   r#   r   U  s$   $

z:TokenClassificationPipeline.aggregate_overlapping_entitiesre   rZ   r   rm   returnc                 C   s4  g }t |D ]\}}	|| rq| jt|| }
|dur|| \}}t|ts5| jdkr5| }| }||| }t| jddrTt| jjj	ddrTt
|
t
|k}n |tjtjtjhv rdtdt |dkosd||d |d  v}t|| | jjkr|}
d	}nd}d}d	}|
|	||||d
}|| q|S )zTFuse various numpy arrays into dicts with all the information needed for aggregationNrt   
_tokenizercontinuing_subword_prefixz?Tokenizer does not support real words, using fallback heuristicr    r   F)wordr   r   r   index
is_subword)	enumeraterN   convert_ids_to_tokensintr   r<   itemgetattrr   ro   r   r)   r1   r2   r3   rK   rL   UserWarningunk_token_idr   )r   re   rZ   r   r   rm   rE   r   idxtoken_scoresr   	start_indend_indword_refr   
pre_entityr"   r"   r#   r   i  sT   


 z/TokenClassificationPipeline.gather_pre_entitiesr   c                 C   s   |t jt jhv r7g }|D ])}|d  }|d | }| jjj| ||d |d |d |d d}|| qn| ||}|t jkrD|S | 	|S )Nr   r   r   r   r   )rx   r   r   r   r   r   )
r)   r/   r0   argmaxro   configid2labelr   aggregate_wordsgroup_entities)r   r   rE   r   r   
entity_idxr   rx   r"   r"   r#   r     s$   

z%TokenClassificationPipeline.aggregater   c                 C   s  | j dd |D }|tjkr&|d d }| }|| }| jjj| }nK|tjkrGt	|dd d}|d }| }|| }| jjj| }n*|tj
krmtdd |D }tj|dd	}	|	 }
| jjj|
 }|	|
 }ntd
||||d d |d d d}|S )Nc                 S      g | ]}|d  qS r   r"   rz   r"   r"   r#   r|         z>TokenClassificationPipeline.aggregate_word.<locals>.<listcomp>r   r   c                 S   s   | d   S )Nr   )r.   )rx   r"   r"   r#   r     s    z<TokenClassificationPipeline.aggregate_word.<locals>.<lambda>r   c                 S   r   )r   r"   rz   r"   r"   r#   r|     r   )rv   zInvalid aggregation_strategyr   ru   r   )rx   r   r   r   r   )rN   convert_tokens_to_stringr)   r1   r   ro   r   r   r3   r.   r2   r   stacknanmeanr   )r   r   rE   r   r   r   r   rx   
max_entityaverage_scoresr   
new_entityr"   r"   r#   aggregate_word  s4   





z*TokenClassificationPipeline.aggregate_wordc                 C   s   |t jt jhv rtdg }d}|D ] }|du r|g}q|d r&|| q|| || |g}q|dur@|| || |S )z
        Override tokens from a given word that disagree to force agreement on word boundaries.

        Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft|
        company| B-ENT I-ENT
        z;NONE and SIMPLE strategies are invalid for word aggregationNr   )r)   r/   r0   r   r   r   )r   r   rE   word_entities
word_grouprx   r"   r"   r#   r     s"   z+TokenClassificationPipeline.aggregate_wordsc                 C   sl   |d d  ddd }tdd |D }dd |D }|t|| j||d d	 |d d
 d}|S )z
        Group together the adjacent tokens with the same entity predicted.

        Args:
            entities (`dict`): The entities predicted by the pipeline.
        r   rx   -r   ru   c                 S   r   )r   r"   rz   r"   r"   r#   r|      r   zBTokenClassificationPipeline.group_sub_entities.<locals>.<listcomp>c                 S   r   r   r"   rz   r"   r"   r#   r|     r   r   r   )ry   r   r   r   r   )splitr   r   meanrN   r   )r   r   rx   r   tokensry   r"   r"   r#   group_sub_entities  s   


z.TokenClassificationPipeline.group_sub_entitiesentity_namec                 C   sT   | drd}|dd  }||fS | dr"d}|dd  }||fS d}|}||fS )NzB-Br   zI-I)
startswith)r   r   bitagr"   r"   r#   get_tag  s   
	
z#TokenClassificationPipeline.get_tagc           	      C   s   g }g }|D ]7}|s| | q| |d \}}| |d d \}}||kr2|dkr2| | q| | | |g}q|rH| | | |S )z
        Find and group together the adjacent tokens with the same entity predicted.

        Args:
            entities (`dict`): The entities predicted by the pipeline.
        rx   ru   r   )r   r   r   )	r   r   entity_groupsentity_group_disaggrx   r   r   last_bilast_tagr"   r"   r#   r     s   
z*TokenClassificationPipeline.group_entities)NNNNNN)N)!r%   r&   r'   r(   default_input_namesr   r:   r   boolr)   r   r   r   rS   r   r   r$   rl   rr   r/   r   r   r   ndarrayrp   r   r   r   r   r   r   r   __classcell__r"   r"   rA   r#   r5   ?   s^    #$
I
 *
>"r5   ) r   rK   typingr   r   r   r   r   r   models.bert.tokenization_bertr   utilsr   r	   r
   r   baser   r   r   r   
tensorflowr7   models.auto.modeling_tf_autor   r~   models.auto.modeling_autor   r   r)   r5   NerPipeliner"   r"   r"   r#   <module>   s0    
"   b