# coding=utf-8
# Copyright 2021 ASAPP Inc. and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch SEW model."""

import math
import warnings
from collections.abc import Sequence
from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, LayerNorm

from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import softmax_backward_data
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_sew_d import SEWDConfig


logger = logging.get_logger(__name__)

_HIDDEN_STATES_START_POSITION = 1


# General docstring
_CONFIG_FOR_DOC = "SEWDConfig"

# Base docstring
_CHECKPOINT_FOR_DOC = "asapp/sew-d-tiny-100k-ft-ls100h"
_EXPECTED_OUTPUT_SHAPE = [1, 292, 384]

# CTC docstring
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTIL OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
_CTC_EXPECTED_LOSS = 0.21

# Audio class docstring
_SEQ_CLASS_CHECKPOINT = "anton-l/sew-d-mid-400k-ft-keyword-spotting"
_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'"
_SEQ_CLASS_EXPECTED_LOSS = 3.16


# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
def _compute_mask_indices(
    shape: Tuple[int, int],
    mask_prob: float,
    mask_length: int,
    attention_mask: Optional[torch.LongTensor] = None,
    min_masks: int = 0,
) -> np.ndarray:
    """
    Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
    ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
    CPU as part of the preprocessing during training.

    Args:
        shape: The shape for which to compute masks. This should be of a tuple of size 2 where
               the first element is the batch size and the second element is the length of the axis to span.
        mask_prob:  The percentage of the whole axis (between 0 and 1) which will be masked. The number of
                    independently generated mask spans of length `mask_length` is computed by
                    `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
                    actual percentage will be smaller.
        mask_length: size of the mask
        min_masks: minimum number of masked spans
        attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
                        each batch dimension.
    """
    batch_size, sequence_length = shape

    if mask_length < 1:
        raise ValueError("`mask_length` has to be bigger than 0.")

    if mask_length > sequence_length:
        raise ValueError(
            f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
            f" and `sequence_length`: {sequence_length}`"
        )

    # epsilon is used for probabilistic rounding
    epsilon = np.random.rand(1).item()

    def compute_num_masked_span(input_length):
        """Given input length, compute how many spans should be masked"""
        num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
        num_masked_span = max(num_masked_span, min_masks)

        # make sure num masked span <= sequence_length
        if num_masked_span * mask_length > sequence_length:
            num_masked_span = sequence_length // mask_length

        # make sure num_masked span is also <= input_length - (mask_length - 1)
        if input_length - (mask_length - 1) < num_masked_span:
            num_masked_span = max(input_length - (mask_length - 1), 0)

        return num_masked_span

    # compute number of masked spans in batch
    input_lengths = (
        attention_mask.detach().sum(-1).tolist()
        if attention_mask is not None
        else [sequence_length for _ in range(batch_size)]
    )

    # SpecAugment mask to fill
    spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
    spec_aug_mask_idxs = []

    max_num_masked_span = compute_num_masked_span(sequence_length)

    if max_num_masked_span == 0:
        return spec_aug_mask

    for input_length in input_lengths:
        # compute num of masked spans for this input
        num_masked_span = compute_num_masked_span(input_length)

        # get random indices to mask
        spec_aug_mask_idx = np.random.choice(
            np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
        )

        # pick first sampled index that will serve as a dummy index to pad vector
        # to ensure same dimension for all batches due to probabilistic rounding
        # Picking first sample just pads those vectors twice.
        if len(spec_aug_mask_idx) == 0:
            # this case can only happen if `input_length` is strictly smaller then
            # `sequence_length` in which case the last token has to be a padding
            # token which we can use as a dummy mask id
            dummy_mask_idx = sequence_length - 1
        else:
            dummy_mask_idx = spec_aug_mask_idx[0]

        spec_aug_mask_idx = np.concatenate(
            [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
        )
        spec_aug_mask_idxs.append(spec_aug_mask_idx)

    spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)

    # expand masked indices to masked spans
    spec_aug_mask_idxs = np.broadcast_to(
        spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
    )
    spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)

    # add offset to the starting indexes so that indexes now create a span
    offsets = np.arange(mask_length)[None, None, :]
    offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
        batch_size, max_num_masked_span * mask_length
    )
    spec_aug_mask_idxs = spec_aug_mask_idxs + offsets

    # ensure that we cannot have indices larger than sequence_length
    if spec_aug_mask_idxs.max() > sequence_length - 1:
        spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1

    # scatter indices to mask
    np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)

    return spec_aug_mask


def make_log_bucket_position(relative_pos, bucket_size, max_position):
    sign = torch.sign(relative_pos)
    mid = bucket_size // 2
    abs_pos = torch.where(
        (relative_pos < mid) & (relative_pos > -mid),
        torch.tensor(mid - 1).type_as(relative_pos),
        torch.abs(relative_pos),
    )
    log_pos = (
        torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid
    )
    bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign)
    return bucket_pos


def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None):
    """
    Build relative position according to the query and key

    We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
    \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
    P_k\\)

    Args:
        query_size (int): the length of query
        key_size (int): the length of key
        bucket_size (int): the size of position bucket
        max_position (int): the maximum allowed absolute position
        device (`torch.device`): the device on which tensors will be created.

    Return:
        `torch.LongTensor`: A tensor with shape [1, query_size, key_size]
    """

    q_ids = torch.arange(0, query_size, device=device)
    k_ids = torch.arange(0, key_size, device=device)
    rel_pos_ids = q_ids[:, None] - k_ids[None, :]
    if bucket_size > 0 and max_position > 0:
        rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
    rel_pos_ids = rel_pos_ids.to(torch.long)
    rel_pos_ids = rel_pos_ids[:query_size, :]
    rel_pos_ids = rel_pos_ids.unsqueeze(0)
    return rel_pos_ids


@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
    return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])


@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
    return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])


@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
    return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))


def get_mask(input, local_context):
    if not isinstance(local_context, DropoutContext):
        dropout = local_context
        mask = None
    else:
        dropout = local_context.dropout
        dropout *= local_context.scale
        mask = local_context.mask if local_context.reuse_mask else None

    if dropout > 0 and mask is None:
        mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)

    if isinstance(local_context, DropoutContext):
        if local_context.mask is None:
            local_context.mask = mask

    return mask, dropout


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SEWD
class SEWDNoLayerNormConvLayer(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = nn.Conv1d(
            self.in_conv_dim,
            self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            stride=config.conv_stride[layer_id],
            bias=config.conv_bias,
        )
        self.activation = ACT2FN[config.feat_extract_activation]

    def forward(self, hidden_states):
        hidden_states = self.conv(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SEWD
class SEWDLayerNormConvLayer(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = nn.Conv1d(
            self.in_conv_dim,
            self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            stride=config.conv_stride[layer_id],
            bias=config.conv_bias,
        )
        self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
        self.activation = ACT2FN[config.feat_extract_activation]

    def forward(self, hidden_states):
        hidden_states = self.conv(hidden_states)

        hidden_states = hidden_states.transpose(-2, -1)
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = hidden_states.transpose(-2, -1)

        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SEWD
class SEWDGroupNormConvLayer(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = nn.Conv1d(
            self.in_conv_dim,
            self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            stride=config.conv_stride[layer_id],
            bias=config.conv_bias,
        )
        self.activation = ACT2FN[config.feat_extract_activation]

        self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)

    def forward(self, hidden_states):
        hidden_states = self.conv(hidden_states)
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.sew.modeling_sew.SEWPositionalConvEmbedding with SEW->SEWD
class SEWDPositionalConvEmbedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.conv = nn.Conv1d(
            config.hidden_size,
            config.hidden_size,
            kernel_size=config.num_conv_pos_embeddings,
            padding=config.num_conv_pos_embeddings // 2,
            groups=config.num_conv_pos_embedding_groups,
            stride=config.squeeze_factor,
        )

        weight_norm = nn.utils.weight_norm
        if hasattr(nn.utils.parametrizations, "weight_norm"):
            weight_norm = nn.utils.parametrizations.weight_norm

        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
                self.conv = weight_norm(self.conv, name="weight", dim=2)
            if hasattr(self.conv, "parametrizations"):
                weight_g = self.conv.parametrizations.weight.original0
                weight_v = self.conv.parametrizations.weight.original1
            else:
                weight_g = self.conv.weight_g
                weight_v = self.conv.weight_v
            deepspeed.zero.register_external_parameter(self, weight_v)
            deepspeed.zero.register_external_parameter(self, weight_g)
        else:
            self.conv = weight_norm(self.conv, name="weight", dim=2)

        self.padding = SEWDSamePadLayer(config.num_conv_pos_embeddings)
        self.activation = ACT2FN[config.feat_extract_activation]

    def forward(self, hidden_states):
        hidden_states = self.conv(hidden_states)
        hidden_states = self.padding(hidden_states)
        hidden_states = self.activation(hidden_states)

        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SEW
class SEWDSamePadLayer(nn.Module):
    def __init__(self, num_conv_pos_embeddings):
        super().__init__()
        self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0

    def forward(self, hidden_states):
        if self.num_pad_remove > 0:
            hidden_states = hidden_states[:, :, : -self.num_pad_remove]
        return hidden_states


# Copied from transformers.models.sew.modeling_sew.SEWUpsampling with SEW->SEWD
class SEWDUpsampling(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.projection = nn.Linear(config.hidden_size, config.hidden_size * config.squeeze_factor)
        self.activation = ACT2FN[config.feat_extract_activation]
        self.squeeze_factor = config.squeeze_factor

    def forward(self, hidden_states):
        hidden_states = self.projection(hidden_states)
        hidden_states = self.activation(hidden_states)

        if self.squeeze_factor > 1:
            # transform embedding channels to sequence length
            bsz, src_len, src_embed_dim = hidden_states.size()
            tgt_len = src_len * self.squeeze_factor
            tgt_embed_dim = src_embed_dim // self.squeeze_factor
            hidden_states = hidden_states.reshape(bsz, src_len, self.squeeze_factor, tgt_embed_dim)
            hidden_states = hidden_states.reshape(bsz, tgt_len, tgt_embed_dim)

        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SEWD
class SEWDFeatureEncoder(nn.Module):
    """Construct the features from raw audio waveform"""

    def __init__(self, config):
        super().__init__()

        if config.feat_extract_norm == "group":
            conv_layers = [SEWDGroupNormConvLayer(config, layer_id=0)] + [
                SEWDNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1)
            ]
        elif config.feat_extract_norm == "layer":
            conv_layers = [SEWDLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)]
        else:
            raise ValueError(
                f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
            )
        self.conv_layers = nn.ModuleList(conv_layers)
        self.gradient_checkpointing = False
        self._requires_grad = True

    def _freeze_parameters(self):
        for param in self.parameters():
            param.requires_grad = False
        self._requires_grad = False

    def forward(self, input_values):
        hidden_states = input_values[:, None]

        # make sure hidden_states require grad for gradient_checkpointing
        if self._requires_grad and self.training:
            hidden_states.requires_grad = True

        for conv_layer in self.conv_layers:
            if self._requires_grad and self.gradient_checkpointing and self.training:
                hidden_states = self._gradient_checkpointing_func(
                    conv_layer.__call__,
                    hidden_states,
                )
            else:
                hidden_states = conv_layer(hidden_states)

        return hidden_states


class SEWDFeatureExtractor(SEWDFeatureEncoder):
    def __init__(self, config):
        super().__init__(config)
        warnings.warn(
            f"The class `{self.__class__.__name__}` has been depreciated "
            "and will be removed in Transformers v5. "
            f"Use `{self.__class__.__bases__[0].__name__}` instead.",
            FutureWarning,
        )


class ContextPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
        self.dropout = StableDropout(config.pooler_dropout)
        self.config = config

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.

        context_token = hidden_states[:, 0]
        context_token = self.dropout(context_token)
        pooled_output = self.dense(context_token)
        pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
        return pooled_output

    @property
    def output_dim(self):
        return self.config.hidden_size


class XSoftmax(torch.autograd.Function):
    """
    Masked Softmax which is optimized for saving memory

    Args:
        input (`torch.tensor`): The input tensor that will apply softmax.
        mask (`torch.IntTensor`):
            The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
        dim (int): The dimension that will apply softmax

    Example:

    ```python
    >>> import torch
    >>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax

    >>> # Make a tensor
    >>> x = torch.randn([4, 20, 100])

    >>> # Create a mask
    >>> mask = (x > 0).int()

    >>> # Specify the dimension to apply softmax
    >>> dim = -1

    >>> y = XSoftmax.apply(x, mask, dim)
    ```"""

    @staticmethod
    def forward(ctx, input, mask, dim):
        ctx.dim = dim
        rmask = ~(mask.to(torch.bool))

        output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
        output = torch.softmax(output, ctx.dim)
        output.masked_fill_(rmask, 0)
        ctx.save_for_backward(output)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        (output,) = ctx.saved_tensors
        inputGrad = softmax_backward_data(ctx, grad_output, output, ctx.dim, output)
        return inputGrad, None, None

    @staticmethod
    def symbolic(g, self, mask, dim):
        import torch.onnx.symbolic_helper as sym_help
        from torch.onnx.symbolic_opset9 import masked_fill, softmax

        mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
        r_mask = g.op(
            "Cast",
            g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
            to_i=sym_help.cast_pytorch_to_onnx["Bool"],
        )
        output = masked_fill(
            g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
        )
        output = softmax(g, output, dim)
        return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))


class DropoutContext:
    def __init__(self):
        self.dropout = 0
        self.mask = None
        self.scale = 1
        self.reuse_mask = True


class XDropout(torch.autograd.Function):
    """Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""

    @staticmethod
    def forward(ctx, input, local_ctx):
        mask, dropout = get_mask(input, local_ctx)
        ctx.scale = 1.0 / (1 - dropout)
        if dropout > 0:
            ctx.save_for_backward(mask)
            return input.masked_fill(mask, 0) * ctx.scale
        else:
            return input

    @staticmethod
    def backward(ctx, grad_output):
        if ctx.scale > 1:
            (mask,) = ctx.saved_tensors
            return grad_output.masked_fill(mask, 0) * ctx.scale, None
        else:
            return grad_output, None

    @staticmethod
    def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
        from torch.onnx import symbolic_opset12

        dropout_p = local_ctx
        if isinstance(local_ctx, DropoutContext):
            dropout_p = local_ctx.dropout
        # StableDropout only calls this function when training.
        train = True
        # TODO: We should check if the opset_version being used to export
        # is > 12 here, but there's no good way to do that. As-is, if the
        # opset_version < 12, export will fail with a CheckerError.
        # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
        # if opset_version < 12:
        #   return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
        return symbolic_opset12.dropout(g, input, dropout_p, train)


class StableDropout(nn.Module):
    """
    Optimized dropout module for stabilizing the training

    Args:
        drop_prob (float): the dropout probabilities
    """

    def __init__(self, drop_prob):
        super().__init__()
        self.drop_prob = drop_prob
        self.count = 0
        self.context_stack = None

    def forward(self, x):
        """
        Call the module

        Args:
            x (`torch.tensor`): The input tensor to apply dropout
        """
        if self.training and self.drop_prob > 0:
            return XDropout.apply(x, self.get_context())
        return x

    def clear_context(self):
        self.count = 0
        self.context_stack = None

    def init_context(self, reuse_mask=True, scale=1):
        if self.context_stack is None:
            self.context_stack = []
        self.count = 0
        for c in self.context_stack:
            c.reuse_mask = reuse_mask
            c.scale = scale

    def get_context(self):
        if self.context_stack is not None:
            if self.count >= len(self.context_stack):
                self.context_stack.append(DropoutContext())
            ctx = self.context_stack[self.count]
            ctx.dropout = self.drop_prob
            self.count += 1
            return ctx
        else:
            return self.drop_prob


class SEWDSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
        self.dropout = nn.Dropout(config.activation_dropout)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class DisentangledSelfAttention(nn.Module):
    """
    Disentangled self-attention module

    Parameters:
        config (`DebertaV2Config`):
            A model config class instance with the configuration to build a new model. The schema is similar to
            *BertConfig*, for more details, please refer [`DebertaV2Config`]

    """

    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )
        self.num_attention_heads = config.num_attention_heads
        _attention_head_size = config.hidden_size // config.num_attention_heads
        self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
        self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
        self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)

        self.share_att_key = getattr(config, "share_att_key", False)
        self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
        self.relative_attention = getattr(config, "relative_attention", False)

        if self.relative_attention:
            self.position_buckets = getattr(config, "position_buckets", -1)
            self.max_relative_positions = getattr(config, "max_relative_positions", -1)
            if self.max_relative_positions < 1:
                self.max_relative_positions = config.max_position_embeddings
            self.pos_ebd_size = self.max_relative_positions
            if self.position_buckets > 0:
                self.pos_ebd_size = self.position_buckets

            self.pos_dropout = StableDropout(config.activation_dropout)

            if not self.share_att_key:
                if "c2p" in self.pos_att_type:
                    self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
                if "p2c" in self.pos_att_type:
                    self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = StableDropout(config.attention_dropout)

    def transpose_for_scores(self, x, attention_heads):
        new_x_shape = x.size()[:-1] + (attention_heads, -1)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))

    def forward(
        self,
        hidden_states,
        attention_mask,
        output_attentions=False,
        query_states=None,
        relative_pos=None,
        rel_embeddings=None,
    ):
        """
        Call the module

        Args:
            hidden_states (`torch.FloatTensor`):
                Input states to the module usually the output from previous layer, it will be the Q,K and V in
                *Attention(Q,K,V)*

            attention_mask (`torch.BoolTensor`):
                An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
                sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
                th token.

            output_attentions (`bool`, *optional*):
                Whether return the attention matrix.

            query_states (`torch.FloatTensor`, *optional*):
                The *Q* state in *Attention(Q,K,V)*.

            relative_pos (`torch.LongTensor`):
                The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
                values ranging in [*-max_relative_positions*, *max_relative_positions*].

            rel_embeddings (`torch.FloatTensor`):
                The embedding of relative distances. It's a tensor of shape [\\(2 \\times
                \\text{max_relative_positions}\\), *hidden_size*].


        """
        if query_states is None:
            query_states = hidden_states
        query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
        key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
        value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)

        rel_att = None
        # Take the dot product between "query" and "key" to get the raw attention scores.
        scale_factor = 1
        if "c2p" in self.pos_att_type:
            scale_factor += 1
        if "p2c" in self.pos_att_type:
            scale_factor += 1
        scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
        attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype))
        if self.relative_attention:
            rel_embeddings = self.pos_dropout(rel_embeddings)
            rel_att = self.disentangled_attention_bias(
                query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
            )

        if rel_att is not None:
            attention_scores = attention_scores + rel_att
        attention_scores = attention_scores
        attention_scores = attention_scores.view(
            -1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
        )

        # bsz x height x length x dimension
        attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
        attention_probs = self.dropout(attention_probs)
        context_layer = torch.bmm(
            attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
        )
        context_layer = (
            context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
            .permute(0, 2, 1, 3)
            .contiguous()
        )
        new_context_layer_shape = context_layer.size()[:-2] + (-1,)
        context_layer = context_layer.view(new_context_layer_shape)
        if output_attentions:
            return (context_layer, attention_probs)
        else:
            return context_layer

    def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
        if relative_pos is None:
            q = query_layer.size(-2)
            relative_pos = build_relative_position(
                q,
                key_layer.size(-2),
                bucket_size=self.position_buckets,
                max_position=self.max_relative_positions,
                device=query_layer.device,
            )
        if relative_pos.dim() == 2:
            relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
        elif relative_pos.dim() == 3:
            relative_pos = relative_pos.unsqueeze(1)
        # bsz x height x query x key
        elif relative_pos.dim() != 4:
            raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")

        att_span = self.pos_ebd_size
        relative_pos = relative_pos.to(device=query_layer.device, dtype=torch.long)

        rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0)
        if self.share_att_key:
            pos_query_layer = self.transpose_for_scores(
                self.query_proj(rel_embeddings), self.num_attention_heads
            ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
            pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
                query_layer.size(0) // self.num_attention_heads, 1, 1
            )
        else:
            if "c2p" in self.pos_att_type:
                pos_key_layer = self.transpose_for_scores(
                    self.pos_key_proj(rel_embeddings), self.num_attention_heads
                ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)  # .split(self.all_head_size, dim=-1)
            if "p2c" in self.pos_att_type:
                pos_query_layer = self.transpose_for_scores(
                    self.pos_query_proj(rel_embeddings), self.num_attention_heads
                ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)  # .split(self.all_head_size, dim=-1)

        score = 0
        # content->position
        if "c2p" in self.pos_att_type:
            scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor)
            c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
            c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
            c2p_att = torch.gather(
                c2p_att,
                dim=-1,
                index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
            )
            score += c2p_att / scale.to(dtype=c2p_att.dtype)

        # position->content
        if "p2c" in self.pos_att_type:
            scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
            if key_layer.size(-2) != query_layer.size(-2):
                r_pos = build_relative_position(
                    key_layer.size(-2),
                    key_layer.size(-2),
                    bucket_size=self.position_buckets,
                    max_position=self.max_relative_positions,
                    device=query_layer.device,
                )
                r_pos = r_pos.unsqueeze(0)
            else:
                r_pos = relative_pos

            p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
            p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
            p2c_att = torch.gather(
                p2c_att,
                dim=-1,
                index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
            ).transpose(-1, -2)
            score += p2c_att / scale.to(dtype=p2c_att.dtype)

        return score


class SEWDAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = DisentangledSelfAttention(config)
        self.output = SEWDSelfOutput(config)
        self.config = config

    def forward(
        self,
        hidden_states,
        attention_mask,
        output_attentions=False,
        query_states=None,
        relative_pos=None,
        rel_embeddings=None,
    ):
        self_output = self.self(
            hidden_states,
            attention_mask,
            output_attentions,
            query_states=query_states,
            relative_pos=relative_pos,
            rel_embeddings=rel_embeddings,
        )
        if output_attentions:
            self_output, att_matrix = self_output
        if query_states is None:
            query_states = hidden_states
        attention_output = self.output(self_output, query_states)

        if output_attentions:
            return (attention_output, att_matrix)
        else:
            return attention_output


# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->SEWD
class SEWDIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class SEWDOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
        self.dropout = nn.Dropout(config.activation_dropout)
        self.config = config

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class SEWDLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = SEWDAttention(config)
        self.intermediate = SEWDIntermediate(config)
        self.output = SEWDOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask,
        query_states=None,
        relative_pos=None,
        rel_embeddings=None,
        output_attentions=False,
    ):
        attention_output = self.attention(
            hidden_states,
            attention_mask,
            output_attentions=output_attentions,
            query_states=query_states,
            relative_pos=relative_pos,
            rel_embeddings=rel_embeddings,
        )
        if output_attentions:
            attention_output, att_matrix = attention_output
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        if output_attentions:
            return (layer_output, att_matrix)
        else:
            return layer_output


class ConvLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        kernel_size = getattr(config, "conv_kernel_size", 3)
        groups = getattr(config, "conv_groups", 1)
        self.conv_act = getattr(config, "conv_act", "tanh")
        self.conv = nn.Conv1d(
            config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
        )
        self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
        self.dropout = StableDropout(config.hidden_dropout_prob)
        self.config = config

    def forward(self, hidden_states, residual_states, input_mask):
        out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
        rmask = (1 - input_mask).bool()
        out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
        out = ACT2FN[self.conv_act](self.dropout(out))

        layer_norm_input = residual_states + out
        output = self.LayerNorm(layer_norm_input).to(layer_norm_input)

        if input_mask is None:
            output_states = output
        else:
            if input_mask.dim() != layer_norm_input.dim():
                if input_mask.dim() == 4:
                    input_mask = input_mask.squeeze(1).squeeze(1)
                input_mask = input_mask.unsqueeze(2)

            input_mask = input_mask.to(output.dtype)
            output_states = output * input_mask

        return output_states


class SEWDTransformerEncoder(nn.Module):
    """Modified BertEncoder with relative position bias support"""

    def __init__(self, config):
        super().__init__()

        self.layer = nn.ModuleList([SEWDLayer(config) for _ in range(config.num_hidden_layers)])
        self.relative_attention = getattr(config, "relative_attention", False)

        if self.relative_attention:
            self.max_relative_positions = getattr(config, "max_relative_positions", -1)
            if self.max_relative_positions < 1:
                self.max_relative_positions = config.max_position_embeddings

            self.position_buckets = getattr(config, "position_buckets", -1)
            pos_ebd_size = self.max_relative_positions * 2

            if self.position_buckets > 0:
                pos_ebd_size = self.position_buckets * 2

            self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)

        self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]

        if "layer_norm" in self.norm_rel_ebd:
            self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)

        self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
        self.gradient_checkpointing = False

    def get_rel_embedding(self):
        rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
        if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
            rel_embeddings = self.LayerNorm(rel_embeddings)
        return rel_embeddings

    def get_attention_mask(self, attention_mask):
        if attention_mask.dim() <= 2:
            extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
            attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
        elif attention_mask.dim() == 3:
            attention_mask = attention_mask.unsqueeze(1)

        return attention_mask

    def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
        if self.relative_attention and relative_pos is None:
            q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
            relative_pos = build_relative_position(
                q,
                hidden_states.size(-2),
                bucket_size=self.position_buckets,
                max_position=self.max_relative_positions,
                device=hidden_states.device,
            )
        return relative_pos

    def forward(
        self,
        hidden_states,
        attention_mask,
        output_hidden_states=True,
        output_attentions=False,
        query_states=None,
        relative_pos=None,
        return_dict=True,
    ):
        if attention_mask.dim() <= 2:
            input_mask = attention_mask
        else:
            input_mask = attention_mask.sum(-2) > 0
        attention_mask = self.get_attention_mask(attention_mask)
        relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)

        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        if isinstance(hidden_states, Sequence):
            next_kv = hidden_states[0]
        else:
            next_kv = hidden_states
        rel_embeddings = self.get_rel_embedding()
        output_states = next_kv
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (output_states,)

            if self.gradient_checkpointing and self.training:
                output_states = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    next_kv,
                    attention_mask,
                    query_states,
                    relative_pos,
                    rel_embeddings,
                    output_attentions,
                )
            else:
                output_states = layer_module(
                    next_kv,
                    attention_mask,
                    query_states=query_states,
                    relative_pos=relative_pos,
                    rel_embeddings=rel_embeddings,
                    output_attentions=output_attentions,
                )

            if output_attentions:
                output_states, att_m = output_states

            if i == 0 and self.conv is not None:
                output_states = self.conv(hidden_states, output_states, input_mask)

            if query_states is not None:
                query_states = output_states
                if isinstance(hidden_states, Sequence):
                    next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
            else:
                next_kv = output_states

            if output_attentions:
                all_attentions = all_attentions + (att_m,)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (output_states,)

        if not return_dict:
            return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
        )


class SEWDEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.pos_conv_embed = SEWDPositionalConvEmbedding(config)
        self.pool = nn.AvgPool1d(config.squeeze_factor, config.squeeze_factor)
        self.encoder = SEWDTransformerEncoder(config)
        self.upsample = SEWDUpsampling(config)
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.tensor,
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        max_encoder_length = hidden_states.shape[1] // self.config.squeeze_factor
        if attention_mask is None:
            attention_mask = torch.ones(
                (hidden_states.shape[0], max_encoder_length), dtype=torch.long, device=hidden_states.device
            )
        else:
            # make sure padded tokens output 0
            expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
            hidden_states[~expand_attention_mask.bool()] = 0.0

            input_lengths = (attention_mask.long()).sum(-1)
            # apply pooling formula to get real output_lengths
            output_lengths = input_lengths // self.config.squeeze_factor
            attention_ids = (
                torch.arange(0, max_encoder_length, device=output_lengths.device)
                .view(1, -1)
                .expand(output_lengths.shape[0], -1)
            )
            attention_mask = (attention_ids < output_lengths.view(-1, 1)).long()

        n_input_timesteps = hidden_states.shape[1]

        hidden_states = hidden_states.transpose(1, 2)
        position_embeddings = self.pos_conv_embed(hidden_states)
        pooled_hidden_states = self.pool(hidden_states)
        min_length = min(position_embeddings.size(-1), pooled_hidden_states.size(-1))
        hidden_states = pooled_hidden_states[..., :min_length] + position_embeddings[..., :min_length]
        hidden_states = hidden_states.transpose(1, 2)

        encoder_outputs = self.encoder(hidden_states, attention_mask, output_hidden_states, output_attentions)

        hidden_states = self.upsample(encoder_outputs.last_hidden_state)
        if hidden_states.shape[1] < n_input_timesteps:
            hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, n_input_timesteps - hidden_states.shape[1]))

        if not return_dict:
            return tuple(
                v for v in [hidden_states, encoder_outputs.hidden_states, encoder_outputs.attentions] if v is not None
            )
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


class SEWDPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = SEWDConfig
    base_model_prefix = "sew-d"
    main_input_name = "input_values"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, SEWDPositionalConvEmbedding):
            nn.init.normal_(
                module.conv.weight,
                mean=0,
                std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
            )
            nn.init.constant_(module.conv.bias, 0)
        elif isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Conv1d):
            if is_deepspeed_zero3_enabled():
                import deepspeed

                if hasattr(module, "weight_v") and hasattr(module, "weight_g"):
                    with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0):
                        nn.init.kaiming_normal_(module.weight.data)
                else:
                    with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0):
                        nn.init.kaiming_normal_(module.weight.data)
            else:
                nn.init.kaiming_normal_(module.weight.data)
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

        if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None:
            module.bias.data.zero_()

    def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
        """
        Computes the output length of the convolutional layers
        """

        def _conv_out_length(input_length, kernel_size, stride):
            # 1D convolutional layer output length formula taken
            # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
            return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1

        for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
            input_lengths = _conv_out_length(input_lengths, kernel_size, stride)

        return input_lengths

    def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
        output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
        batch_size = attention_mask.shape[0]

        attention_mask = torch.zeros(
            (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
        )
        # these two operations makes sure that all values before the output lengths idxs are attended to
        attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
        attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
        return attention_mask


SEWD_START_DOCSTRING = r"""
    SEW-D was proposed in [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech
    Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger,
    Yoav Artzi.

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving etc.).

    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`SEWDConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


SEWD_INPUTS_DOCSTRING = r"""
    Args:
        input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
            Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
            into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
            soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
            conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
        attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
            1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare SEW-D Model transformer outputting raw hidden-states without any specific head on top.",
    SEWD_START_DOCSTRING,
)
# Copied from transformers.models.sew.modeling_sew.SEWModel with SEW->SEWD, layer_norm_eps->feature_layer_norm_eps
class SEWDModel(SEWDPreTrainedModel):
    def __init__(self, config: SEWDConfig):
        super().__init__(config)
        self.config = config
        self.feature_extractor = SEWDFeatureEncoder(config)
        self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.feature_layer_norm_eps)

        self.project_features = config.conv_dim[-1] != config.hidden_size
        if self.project_features:
            self.feature_projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
        self.feature_dropout = nn.Dropout(config.feat_proj_dropout)

        if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
            self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_())

        self.encoder = SEWDEncoder(config)

        # Initialize weights and apply final processing
        self.post_init()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
    def _mask_hidden_states(
        self,
        hidden_states: torch.FloatTensor,
        mask_time_indices: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
    ):
        """
        Masks extracted features along time axis and/or along feature axis according to
        [SpecAugment](https://arxiv.org/abs/1904.08779).
        """

        # `config.apply_spec_augment` can set masking to False
        if not getattr(self.config, "apply_spec_augment", True):
            return hidden_states

        # generate indices & apply SpecAugment along time axis
        batch_size, sequence_length, hidden_size = hidden_states.size()

        if mask_time_indices is not None:
            # apply SpecAugment along time axis with given mask_time_indices
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
        elif self.config.mask_time_prob > 0 and self.training:
            mask_time_indices = _compute_mask_indices(
                (batch_size, sequence_length),
                mask_prob=self.config.mask_time_prob,
                mask_length=self.config.mask_time_length,
                attention_mask=attention_mask,
                min_masks=self.config.mask_time_min_masks,
            )
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)

        if self.config.mask_feature_prob > 0 and self.training:
            # generate indices & apply SpecAugment along feature axis
            mask_feature_indices = _compute_mask_indices(
                (batch_size, hidden_size),
                mask_prob=self.config.mask_feature_prob,
                mask_length=self.config.mask_feature_length,
                min_masks=self.config.mask_feature_min_masks,
            )
            mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
            mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
            hidden_states[mask_feature_indices] = 0

        return hidden_states

    @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutput,
        config_class=_CONFIG_FOR_DOC,
        modality="audio",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
    def forward(
        self,
        input_values: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        mask_time_indices: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        extract_features = self.feature_extractor(input_values)
        extract_features = extract_features.transpose(1, 2)
        extract_features = self.layer_norm(extract_features)

        if self.project_features:
            extract_features = self.feature_projection(extract_features)
        hidden_states = self.feature_dropout(extract_features)

        if attention_mask is not None:
            # compute reduced attention_mask corresponding to feature vectors
            attention_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)

        hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)

        encoder_outputs = self.encoder(
            hidden_states,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = encoder_outputs[0]

        if not return_dict:
            return (hidden_states,) + encoder_outputs[1:]

        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


@add_start_docstrings(
    """SEW-D Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
    SEWD_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV2VEC2->SEWD
class SEWDForCTC(SEWDPreTrainedModel):
    def __init__(self, config, target_lang: Optional[str] = None):
        super().__init__(config)

        self.sew_d = SEWDModel(config)
        self.dropout = nn.Dropout(config.final_dropout)

        self.target_lang = target_lang

        if config.vocab_size is None:
            raise ValueError(
                f"You are trying to instantiate {self.__class__} with a configuration that "
                "does not define the vocabulary size of the language model head. Please "
                "instantiate the model as follows: `SEWDForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
                "or define `vocab_size` of your model's configuration."
            )
        output_hidden_size = (
            config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
        )
        self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)

        # Initialize weights and apply final processing
        self.post_init()

    def tie_weights(self):
        """
        This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
        passing `target_lang=...` to `from_pretrained(...)`.

        This method is **not** supposed to be called by the user and is prone to be changed in the future.
        """

        # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
        # correctly load adapter layers for SEWD so that we do not have to introduce a new API to
        # [`PreTrainedModel`]. While slightly hacky, SEWD never has to tie input and output embeddings, so that it is
        # ok to repurpose this function here.
        target_lang = self.target_lang

        if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
            raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
        elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
            logger.info("By default `target_lang` is set to 'eng'.")
        elif target_lang is not None:
            self.load_adapter(target_lang, force_load=True)

    def freeze_feature_extractor(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        warnings.warn(
            "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
            "Please use the equivalent `freeze_feature_encoder` method instead.",
            FutureWarning,
        )
        self.freeze_feature_encoder()

    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.sew_d.feature_extractor._freeze_parameters()

    def freeze_base_model(self):
        """
        Calling this function will disable the gradient computation for the base model so that its parameters will not
        be updated during training. Only the classification head will be updated.
        """
        for param in self.sew_d.parameters():
            param.requires_grad = False

    @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutput,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_CTC_EXPECTED_OUTPUT,
        expected_loss=_CTC_EXPECTED_LOSS,
    )
    def forward(
        self,
        input_values: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, CausalLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
            Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
            the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
            All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
            config.vocab_size - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None and labels.max() >= self.config.vocab_size:
            raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")

        outputs = self.sew_d(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = self.dropout(hidden_states)

        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # retrieve loss input_lengths from attention_mask
            attention_mask = (
                attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
            )
            input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)

            # assuming that padded tokens are filled with -100
            # when not being attended to
            labels_mask = labels >= 0
            target_lengths = labels_mask.sum(-1)
            flattened_targets = labels.masked_select(labels_mask)

            # ctc_loss doesn't support fp16
            log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)

            with torch.backends.cudnn.flags(enabled=False):
                loss = nn.functional.ctc_loss(
                    log_probs,
                    flattened_targets,
                    input_lengths,
                    target_lengths,
                    blank=self.config.pad_token_id,
                    reduction=self.config.ctc_loss_reduction,
                    zero_infinity=self.config.ctc_zero_infinity,
                )

        if not return_dict:
            output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
        )


@add_start_docstrings(
    """
    SEWD Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB
    Keyword Spotting.
    """,
    SEWD_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV2VEC2->SEWD
class SEWDForSequenceClassification(SEWDPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        if hasattr(config, "add_adapter") and config.add_adapter:
            raise ValueError(
                "Sequence classification does not support the use of SEWD adapters (config.add_adapter=True)"
            )
        self.sew_d = SEWDModel(config)
        num_layers = config.num_hidden_layers + 1  # transformer layers + input embeddings
        if config.use_weighted_layer_sum:
            self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
        self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
        self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def freeze_feature_extractor(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameters will
        not be updated during training.
        """
        warnings.warn(
            "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
            "Please use the equivalent `freeze_feature_encoder` method instead.",
            FutureWarning,
        )
        self.freeze_feature_encoder()

    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.sew_d.feature_extractor._freeze_parameters()

    def freeze_base_model(self):
        """
        Calling this function will disable the gradient computation for the base model so that its parameters will not
        be updated during training. Only the classification head will be updated.
        """
        for param in self.sew_d.parameters():
            param.requires_grad = False

    @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_SEQ_CLASS_CHECKPOINT,
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
        modality="audio",
        expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
        expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
    )
    def forward(
        self,
        input_values: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states

        outputs = self.sew_d(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if self.config.use_weighted_layer_sum:
            hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
            hidden_states = torch.stack(hidden_states, dim=1)
            norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
            hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
        else:
            hidden_states = outputs[0]

        hidden_states = self.projector(hidden_states)
        if attention_mask is None:
            pooled_output = hidden_states.mean(dim=1)
        else:
            padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
            expand_padding_mask = padding_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
            hidden_states[~expand_padding_mask] = 0.0
            pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)

        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


__all__ = ["SEWDForCTC", "SEWDForSequenceClassification", "SEWDModel", "SEWDPreTrainedModel"]
