# coding=utf-8
# Copyright 2021 NVIDIA The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch SegFormer model."""

import math
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput, SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_segformer import SegformerConfig


logger = logging.get_logger(__name__)


# General docstring
_CONFIG_FOR_DOC = "SegformerConfig"

# Base docstring
_CHECKPOINT_FOR_DOC = "nvidia/mit-b0"
_EXPECTED_OUTPUT_SHAPE = [1, 256, 16, 16]

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "nvidia/mit-b0"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"


class SegFormerImageClassifierOutput(ImageClassifierOutput):
    """
    Base class for outputs of image classification models.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also
            called feature maps) of the model at the output of each stage.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    """
    if drop_prob == 0.0 or not training:
        return input
    keep_prob = 1 - drop_prob
    shape = (input.shape[0],) + (1,) * (input.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
    random_tensor.floor_()  # binarize
    output = input.div(keep_prob) * random_tensor
    return output


# Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Segformer
class SegformerDropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: Optional[float] = None) -> None:
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return drop_path(hidden_states, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


class SegformerOverlapPatchEmbeddings(nn.Module):
    """Construct the overlapping patch embeddings."""

    def __init__(self, patch_size, stride, num_channels, hidden_size):
        super().__init__()
        self.proj = nn.Conv2d(
            num_channels,
            hidden_size,
            kernel_size=patch_size,
            stride=stride,
            padding=patch_size // 2,
        )

        self.layer_norm = nn.LayerNorm(hidden_size)

    def forward(self, pixel_values):
        embeddings = self.proj(pixel_values)
        _, _, height, width = embeddings.shape
        # (batch_size, num_channels, height, width) -> (batch_size, num_channels, height*width) -> (batch_size, height*width, num_channels)
        # this can be fed to a Transformer layer
        embeddings = embeddings.flatten(2).transpose(1, 2)
        embeddings = self.layer_norm(embeddings)
        return embeddings, height, width


class SegformerEfficientSelfAttention(nn.Module):
    """SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT
    paper](https://arxiv.org/abs/2102.12122)."""

    def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads

        if self.hidden_size % self.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
                f"heads ({self.num_attention_heads})"
            )

        self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(self.hidden_size, self.all_head_size)
        self.key = nn.Linear(self.hidden_size, self.all_head_size)
        self.value = nn.Linear(self.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

        self.sr_ratio = sequence_reduction_ratio
        if sequence_reduction_ratio > 1:
            self.sr = nn.Conv2d(
                hidden_size, hidden_size, kernel_size=sequence_reduction_ratio, stride=sequence_reduction_ratio
            )
            self.layer_norm = nn.LayerNorm(hidden_size)

    def transpose_for_scores(self, hidden_states):
        new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        hidden_states = hidden_states.view(new_shape)
        return hidden_states.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        height,
        width,
        output_attentions=False,
    ):
        query_layer = self.transpose_for_scores(self.query(hidden_states))

        if self.sr_ratio > 1:
            batch_size, seq_len, num_channels = hidden_states.shape
            # Reshape to (batch_size, num_channels, height, width)
            hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
            # Apply sequence reduction
            hidden_states = self.sr(hidden_states)
            # Reshape back to (batch_size, seq_len, num_channels)
            hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1)
            hidden_states = self.layer_norm(hidden_states)

        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs


class SegformerSelfOutput(nn.Module):
    def __init__(self, config, hidden_size):
        super().__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class SegformerAttention(nn.Module):
    def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
        super().__init__()
        self.self = SegformerEfficientSelfAttention(
            config=config,
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            sequence_reduction_ratio=sequence_reduction_ratio,
        )
        self.output = SegformerSelfOutput(config, hidden_size=hidden_size)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(self, hidden_states, height, width, output_attentions=False):
        self_outputs = self.self(hidden_states, height, width, output_attentions)

        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class SegformerDWConv(nn.Module):
    def __init__(self, dim=768):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)

    def forward(self, hidden_states, height, width):
        batch_size, seq_len, num_channels = hidden_states.shape
        hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width)
        hidden_states = self.dwconv(hidden_states)
        hidden_states = hidden_states.flatten(2).transpose(1, 2)

        return hidden_states


class SegformerMixFFN(nn.Module):
    def __init__(self, config, in_features, hidden_features=None, out_features=None):
        super().__init__()
        out_features = out_features or in_features
        self.dense1 = nn.Linear(in_features, hidden_features)
        self.dwconv = SegformerDWConv(hidden_features)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
        self.dense2 = nn.Linear(hidden_features, out_features)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, height, width):
        hidden_states = self.dense1(hidden_states)
        hidden_states = self.dwconv(hidden_states, height, width)
        hidden_states = self.intermediate_act_fn(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense2(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class SegformerLayer(nn.Module):
    """This corresponds to the Block class in the original implementation."""

    def __init__(self, config, hidden_size, num_attention_heads, drop_path, sequence_reduction_ratio, mlp_ratio):
        super().__init__()
        self.layer_norm_1 = nn.LayerNorm(hidden_size)
        self.attention = SegformerAttention(
            config,
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            sequence_reduction_ratio=sequence_reduction_ratio,
        )
        self.drop_path = SegformerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.layer_norm_2 = nn.LayerNorm(hidden_size)
        mlp_hidden_size = int(hidden_size * mlp_ratio)
        self.mlp = SegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size)

    def forward(self, hidden_states, height, width, output_attentions=False):
        self_attention_outputs = self.attention(
            self.layer_norm_1(hidden_states),  # in Segformer, layernorm is applied before self-attention
            height,
            width,
            output_attentions=output_attentions,
        )

        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        # first residual connection (with stochastic depth)
        attention_output = self.drop_path(attention_output)
        hidden_states = attention_output + hidden_states

        mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width)

        # second residual connection (with stochastic depth)
        mlp_output = self.drop_path(mlp_output)
        layer_output = mlp_output + hidden_states

        outputs = (layer_output,) + outputs

        return outputs


class SegformerEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config

        # stochastic depth decay rule
        drop_path_decays = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]

        # patch embeddings
        embeddings = []
        for i in range(config.num_encoder_blocks):
            embeddings.append(
                SegformerOverlapPatchEmbeddings(
                    patch_size=config.patch_sizes[i],
                    stride=config.strides[i],
                    num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
                    hidden_size=config.hidden_sizes[i],
                )
            )
        self.patch_embeddings = nn.ModuleList(embeddings)

        # Transformer blocks
        blocks = []
        cur = 0
        for i in range(config.num_encoder_blocks):
            # each block consists of layers
            layers = []
            if i != 0:
                cur += config.depths[i - 1]
            for j in range(config.depths[i]):
                layers.append(
                    SegformerLayer(
                        config,
                        hidden_size=config.hidden_sizes[i],
                        num_attention_heads=config.num_attention_heads[i],
                        drop_path=drop_path_decays[cur + j],
                        sequence_reduction_ratio=config.sr_ratios[i],
                        mlp_ratio=config.mlp_ratios[i],
                    )
                )
            blocks.append(nn.ModuleList(layers))

        self.block = nn.ModuleList(blocks)

        # Layer norms
        self.layer_norm = nn.ModuleList(
            [nn.LayerNorm(config.hidden_sizes[i]) for i in range(config.num_encoder_blocks)]
        )

    def forward(
        self,
        pixel_values: torch.FloatTensor,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        return_dict: Optional[bool] = True,
    ) -> Union[Tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        batch_size = pixel_values.shape[0]

        hidden_states = pixel_values
        for idx, x in enumerate(zip(self.patch_embeddings, self.block, self.layer_norm)):
            embedding_layer, block_layer, norm_layer = x
            # first, obtain patch embeddings
            hidden_states, height, width = embedding_layer(hidden_states)
            # second, send embeddings through blocks
            for i, blk in enumerate(block_layer):
                layer_outputs = blk(hidden_states, height, width, output_attentions)
                hidden_states = layer_outputs[0]
                if output_attentions:
                    all_self_attentions = all_self_attentions + (layer_outputs[1],)
            # third, apply layer norm
            hidden_states = norm_layer(hidden_states)
            # fourth, optionally reshape back to (batch_size, num_channels, height, width)
            if idx != len(self.patch_embeddings) - 1 or (
                idx == len(self.patch_embeddings) - 1 and self.config.reshape_last_stage
            ):
                hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class SegformerPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = SegformerConfig
    base_model_prefix = "segformer"
    main_input_name = "pixel_values"

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d)):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


SEGFORMER_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`SegformerConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

SEGFORMER_INPUTS_DOCSTRING = r"""

    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare SegFormer encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.",
    SEGFORMER_START_DOCSTRING,
)
class SegformerModel(SegformerPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config

        # hierarchical Transformer encoder
        self.encoder = SegformerEncoder(config)

        # Initialize weights and apply final processing
        self.post_init()

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutput,
        config_class=_CONFIG_FOR_DOC,
        modality="vision",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
    def forward(
        self,
        pixel_values: torch.FloatTensor,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_outputs = self.encoder(
            pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]

        if not return_dict:
            return (sequence_output,) + encoder_outputs[1:]

        return BaseModelOutput(
            last_hidden_state=sequence_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


@add_start_docstrings(
    """
    SegFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden
    states) e.g. for ImageNet.
    """,
    SEGFORMER_START_DOCSTRING,
)
class SegformerForImageClassification(SegformerPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.num_labels = config.num_labels
        self.segformer = SegformerModel(config)

        # Classifier head
        self.classifier = nn.Linear(config.hidden_sizes[-1], config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_IMAGE_CLASS_CHECKPOINT,
        output_type=SegFormerImageClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
    )
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SegFormerImageClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.segformer(
            pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        # convert last hidden states to (batch_size, height*width, hidden_size)
        batch_size = sequence_output.shape[0]
        if self.config.reshape_last_stage:
            # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
            sequence_output = sequence_output.permute(0, 2, 3, 1)
        sequence_output = sequence_output.reshape(batch_size, -1, self.config.hidden_sizes[-1])

        # global average pooling
        sequence_output = sequence_output.mean(dim=1)

        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SegFormerImageClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class SegformerMLP(nn.Module):
    """
    Linear Embedding.
    """

    def __init__(self, config: SegformerConfig, input_dim):
        super().__init__()
        self.proj = nn.Linear(input_dim, config.decoder_hidden_size)

    def forward(self, hidden_states: torch.Tensor):
        hidden_states = hidden_states.flatten(2).transpose(1, 2)
        hidden_states = self.proj(hidden_states)
        return hidden_states


class SegformerDecodeHead(SegformerPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        # linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size
        mlps = []
        for i in range(config.num_encoder_blocks):
            mlp = SegformerMLP(config, input_dim=config.hidden_sizes[i])
            mlps.append(mlp)
        self.linear_c = nn.ModuleList(mlps)

        # the following 3 layers implement the ConvModule of the original implementation
        self.linear_fuse = nn.Conv2d(
            in_channels=config.decoder_hidden_size * config.num_encoder_blocks,
            out_channels=config.decoder_hidden_size,
            kernel_size=1,
            bias=False,
        )
        self.batch_norm = nn.BatchNorm2d(config.decoder_hidden_size)
        self.activation = nn.ReLU()

        self.dropout = nn.Dropout(config.classifier_dropout_prob)
        self.classifier = nn.Conv2d(config.decoder_hidden_size, config.num_labels, kernel_size=1)

        self.config = config

    def forward(self, encoder_hidden_states: torch.FloatTensor) -> torch.Tensor:
        batch_size = encoder_hidden_states[-1].shape[0]

        all_hidden_states = ()
        for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.linear_c):
            if self.config.reshape_last_stage is False and encoder_hidden_state.ndim == 3:
                height = width = int(math.sqrt(encoder_hidden_state.shape[-1]))
                encoder_hidden_state = (
                    encoder_hidden_state.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
                )

            # unify channel dimension
            height, width = encoder_hidden_state.shape[2], encoder_hidden_state.shape[3]
            encoder_hidden_state = mlp(encoder_hidden_state)
            encoder_hidden_state = encoder_hidden_state.permute(0, 2, 1)
            encoder_hidden_state = encoder_hidden_state.reshape(batch_size, -1, height, width)
            # upsample
            encoder_hidden_state = nn.functional.interpolate(
                encoder_hidden_state, size=encoder_hidden_states[0].size()[2:], mode="bilinear", align_corners=False
            )
            all_hidden_states += (encoder_hidden_state,)

        hidden_states = self.linear_fuse(torch.cat(all_hidden_states[::-1], dim=1))
        hidden_states = self.batch_norm(hidden_states)
        hidden_states = self.activation(hidden_states)
        hidden_states = self.dropout(hidden_states)

        # logits are of shape (batch_size, num_labels, height/4, width/4)
        logits = self.classifier(hidden_states)

        return logits


@add_start_docstrings(
    """SegFormer Model transformer with an all-MLP decode head on top e.g. for ADE20k, CityScapes.""",
    SEGFORMER_START_DOCSTRING,
)
class SegformerForSemanticSegmentation(SegformerPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.segformer = SegformerModel(config)
        self.decode_head = SegformerDecodeHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: torch.FloatTensor,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SemanticSegmenterOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
            Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
        >>> from PIL import Image
        >>> import requests

        >>> image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
        >>> model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = image_processor(images=image, return_tensors="pt")
        >>> outputs = model(**inputs)
        >>> logits = outputs.logits  # shape (batch_size, num_labels, height/4, width/4)
        >>> list(logits.shape)
        [1, 150, 128, 128]
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        if labels is not None and self.config.num_labels < 1:
            raise ValueError(f"Number of labels should be >=0: {self.config.num_labels}")

        outputs = self.segformer(
            pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=True,  # we need the intermediate hidden states
            return_dict=return_dict,
        )

        encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]

        logits = self.decode_head(encoder_hidden_states)

        loss = None
        if labels is not None:
            # upsample logits to the images' original size
            upsampled_logits = nn.functional.interpolate(
                logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
            )
            if self.config.num_labels > 1:
                loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
                loss = loss_fct(upsampled_logits, labels)
            elif self.config.num_labels == 1:
                valid_mask = ((labels >= 0) & (labels != self.config.semantic_loss_ignore_index)).float()
                loss_fct = BCEWithLogitsLoss(reduction="none")
                loss = loss_fct(upsampled_logits.squeeze(1), labels.float())
                loss = (loss * valid_mask).mean()

        if not return_dict:
            if output_hidden_states:
                output = (logits,) + outputs[1:]
            else:
                output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SemanticSegmenterOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states if output_hidden_states else None,
            attentions=outputs.attentions,
        )


__all__ = [
    "SegformerDecodeHead",
    "SegformerForImageClassification",
    "SegformerForSemanticSegmentation",
    "SegformerLayer",
    "SegformerModel",
    "SegformerPreTrainedModel",
]
