# coding=utf-8
# Copyright 2022 WeChatAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for RoCBert."""

import collections
import itertools
import json
import os
import unicodedata
from typing import Dict, List, Optional, Tuple, Union

from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...tokenization_utils_base import (
    ENCODE_KWARGS_DOCSTRING,
    ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
    BatchEncoding,
    EncodedInput,
    EncodedInputPair,
    PaddingStrategy,
    PreTokenizedInput,
    PreTokenizedInputPair,
    TensorType,
    TextInput,
    TextInputPair,
    TruncationStrategy,
)
from ...utils import add_end_docstrings, logging


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {
    "vocab_file": "vocab.txt",
    "word_shape_file": "word_shape.json",
    "word_pronunciation_file": "word_pronunciation.json",
}


# Copied from transformers.models.bert.tokenization_bert.load_vocab
def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    with open(vocab_file, "r", encoding="utf-8") as reader:
        tokens = reader.readlines()
    for index, token in enumerate(tokens):
        token = token.rstrip("\n")
        vocab[token] = index
    return vocab


# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
    """Runs basic whitespace cleaning and splitting on a piece of text."""
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


class RoCBertTokenizer(PreTrainedTokenizer):
    r"""
    Args:
    Construct a RoCBert tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which
    contains most of the main methods. Users should refer to this superclass for more information regarding those
    methods.
        vocab_file (`str`):
            File containing the vocabulary.
        word_shape_file (`str`):
            File containing the word => shape info.
        word_pronunciation_file (`str`):
            File containing the word => pronunciation info.
        do_lower_case (`bool`, *optional*, defaults to `True`):
            Whether or not to lowercase the input when tokenizing.
        do_basic_tokenize (`bool`, *optional*, defaults to `True`):
            Whether or not to do basic tokenization before WordPiece.
        never_split (`Iterable`, *optional*):
            Collection of tokens which will never be split during tokenization. Only has an effect when
            `do_basic_tokenize=True`
        unk_token (`str`, *optional*, defaults to `"[UNK]"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead.
        sep_token (`str`, *optional*, defaults to `"[SEP]"`):
            The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
            sequence classification or for a text and a question for question answering. It is also used as the last
            token of a sequence built with special tokens.
        pad_token (`str`, *optional*, defaults to `"[PAD]"`):
            The token used for padding, for example when batching sequences of different lengths.
        cls_token (`str`, *optional*, defaults to `"[CLS]"`):
            The classifier token which is used when doing sequence classification (classification of the whole sequence
            instead of per-token classification). It is the first token of the sequence when built with special tokens.
        mask_token (`str`, *optional*, defaults to `"[MASK]"`):
            The token used for masking values. This is the token used when training this model with masked language
            modeling. This is the token which the model will try to predict.
        tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
            Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this
            [issue](https://github.com/huggingface/transformers/issues/328)).
        strip_accents (`bool`, *optional*):
            Whether or not to strip all accents. If this option is not specified, then it will be determined by the
            value for `lowercase` (as in the original BERT).
    """

    vocab_files_names = VOCAB_FILES_NAMES

    def __init__(
        self,
        vocab_file,
        word_shape_file,
        word_pronunciation_file,
        do_lower_case=True,
        do_basic_tokenize=True,
        never_split=None,
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        tokenize_chinese_chars=True,
        strip_accents=None,
        **kwargs,
    ):
        for cur_file in [vocab_file, word_shape_file, word_pronunciation_file]:
            if cur_file is None or not os.path.isfile(cur_file):
                raise ValueError(
                    f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google "
                    "pretrained model use `tokenizer = RoCBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
                )

        self.vocab = load_vocab(vocab_file)

        with open(word_shape_file, "r", encoding="utf8") as in_file:
            self.word_shape = json.load(in_file)

        with open(word_pronunciation_file, "r", encoding="utf8") as in_file:
            self.word_pronunciation = json.load(in_file)

        self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])

        self.do_basic_tokenize = do_basic_tokenize
        if do_basic_tokenize:
            self.basic_tokenizer = RoCBertBasicTokenizer(
                do_lower_case=do_lower_case,
                never_split=never_split,
                tokenize_chinese_chars=tokenize_chinese_chars,
                strip_accents=strip_accents,
            )
        self.wordpiece_tokenizer = RoCBertWordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
        super().__init__(
            do_lower_case=do_lower_case,
            do_basic_tokenize=do_basic_tokenize,
            never_split=never_split,
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            tokenize_chinese_chars=tokenize_chinese_chars,
            strip_accents=strip_accents,
            **kwargs,
        )

    @property
    def do_lower_case(self):
        return self.basic_tokenizer.do_lower_case

    @property
    def vocab_size(self):
        return len(self.vocab)

    # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab
    def get_vocab(self):
        return dict(self.vocab, **self.added_tokens_encoder)

    # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize
    def _tokenize(self, text, split_special_tokens=False):
        split_tokens = []
        if self.do_basic_tokenize:
            for token in self.basic_tokenizer.tokenize(
                text, never_split=self.all_special_tokens if not split_special_tokens else None
            ):
                # If the token is part of the never_split set
                if token in self.basic_tokenizer.never_split:
                    split_tokens.append(token)
                else:
                    split_tokens += self.wordpiece_tokenizer.tokenize(token)
        else:
            split_tokens = self.wordpiece_tokenizer.tokenize(text)
        return split_tokens

    def _encode_plus(
        self,
        text: Union[TextInput, PreTokenizedInput, EncodedInput],
        text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[str] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        def get_input_ids(text):
            if isinstance(text, str):
                tokens = self.tokenize(text, **kwargs)
                tokens_ids = self.convert_tokens_to_ids(tokens)
                tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens)
                tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens)
                return tokens_ids, tokens_shape_ids, tokens_proun_ids
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
                if is_split_into_words:
                    tokens = list(
                        itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text))
                    )
                    tokens_ids = self.convert_tokens_to_ids(tokens)
                    tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens)
                    tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens)
                    return tokens_ids, tokens_shape_ids, tokens_proun_ids
                else:
                    tokens_ids = self.convert_tokens_to_ids(text)
                    tokens_shape_ids = self.convert_tokens_to_shape_ids(text)
                    tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(text)
                    return tokens_ids, tokens_shape_ids, tokens_proun_ids
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
                return text, [0] * len(text), [0] * len(text)  # shape and proun id is pad_value
            else:
                if is_split_into_words:
                    raise ValueError(
                        f"Input {text} is not valid. Should be a string or a list/tuple of strings when"
                        " `is_split_into_words=True`."
                    )
                else:
                    raise ValueError(
                        f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of"
                        " integers."
                    )

        if return_offsets_mapping:
            raise NotImplementedError(
                "return_offset_mapping is not available when using Python tokenizers. "
                "To use this feature, change your tokenizer to one deriving from "
                "transformers.PreTrainedTokenizerFast. "
                "More information on available tokenizers at "
                "https://github.com/huggingface/transformers/pull/2674"
            )

        first_ids, first_shape_ids, first_proun_ids = get_input_ids(text)
        if text_pair is not None:
            second_ids, second_shape_ids, second_proun_ids = get_input_ids(text_pair)
        else:
            second_ids, second_shape_ids, second_proun_ids = None, None, None

        return self.prepare_for_model(
            first_ids,
            first_shape_ids,
            first_proun_ids,
            pair_ids=second_ids,
            pair_shape_ids=second_shape_ids,
            pair_pronunciation_ids=second_proun_ids,
            add_special_tokens=add_special_tokens,
            padding=padding_strategy.value,
            truncation=truncation_strategy.value,
            max_length=max_length,
            stride=stride,
            pad_to_multiple_of=pad_to_multiple_of,
            padding_side=padding_side,
            return_tensors=return_tensors,
            prepend_batch_axis=True,
            return_attention_mask=return_attention_mask,
            return_token_type_ids=return_token_type_ids,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_length=return_length,
            verbose=verbose,
        )

    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def prepare_for_model(
        self,
        ids: List[int],
        shape_ids: List[int],
        pronunciation_ids: List[int],
        pair_ids: Optional[List[int]] = None,
        pair_shape_ids: Optional[List[int]] = None,
        pair_pronunciation_ids: Optional[List[int]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        stride: int = 0,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[str] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        prepend_batch_axis: bool = False,
        **kwargs,
    ) -> BatchEncoding:
        """
        Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
        adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
        manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids*
        different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return
        overflowing tokens. Such a combination of arguments will raise an error.

        Args:
            ids (`List[int]`):
                Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
                `convert_tokens_to_id` methods.
            shape_ids (`List[int]`):
                Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
                `convert_token_to_shape_id` methods.
            pronunciation_ids (`List[int]`):
                Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
                `convert_token_to_pronunciation_id` methods.
            pair_ids (`List[int]`, *optional*):
                Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
                and `convert_tokens_to_id` methods.
            pair_shape_ids (`List[int]`, *optional*):
                Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
                and `convert_token_to_shape_id` methods.
            pair_pronunciation_ids (`List[int]`, *optional*):
                Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
                and `convert_token_to_pronunciation_id` methods.
        """

        # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
        padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            verbose=verbose,
            **kwargs,
        )

        pair = bool(pair_ids is not None)
        len_ids = len(ids)
        len_pair_ids = len(pair_ids) if pair else 0

        if return_token_type_ids and not add_special_tokens:
            raise ValueError(
                "Asking to return token_type_ids while setting add_special_tokens to False "
                "results in an undefined behavior. Please set add_special_tokens to True or "
                "set return_token_type_ids to None."
            )

        if (
            return_overflowing_tokens
            and truncation_strategy == TruncationStrategy.LONGEST_FIRST
            and pair_ids is not None
        ):
            raise ValueError(
                "Not possible to return overflowing tokens for pair of sequences with the "
                "`longest_first`. Please select another truncation strategy than `longest_first`, "
                "for instance `only_second` or `only_first`."
            )

        # Load from model defaults
        if return_token_type_ids is None:
            return_token_type_ids = "token_type_ids" in self.model_input_names
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        encoded_inputs = {}

        # Compute the total size of the returned encodings
        total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)

        # Truncation: Handle max sequence length
        overflowing_tokens = []
        if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
            ids, pair_ids, overflowing_tokens = self.truncate_sequences(
                ids,
                pair_ids=pair_ids,
                num_tokens_to_remove=total_len - max_length,
                truncation_strategy=truncation_strategy,
                stride=stride,
            )
            shape_ids, pair_shape_ids, _ = self.truncate_sequences(
                shape_ids,
                pair_ids=pair_shape_ids,
                num_tokens_to_remove=total_len - max_length,
                truncation_strategy=truncation_strategy,
                stride=stride,
            )
            pronunciation_ids, pair_pronunciation_ids, _ = self.truncate_sequences(
                pronunciation_ids,
                pair_ids=pair_pronunciation_ids,
                num_tokens_to_remove=total_len - max_length,
                truncation_strategy=truncation_strategy,
                stride=stride,
            )

        if return_overflowing_tokens:
            encoded_inputs["overflowing_tokens"] = overflowing_tokens
            encoded_inputs["num_truncated_tokens"] = total_len - max_length

        # Add special tokens
        if add_special_tokens:
            sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
            token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
            input_shape_ids = self.build_inputs_with_special_tokens(
                shape_ids, pair_shape_ids, self.word_shape["[UNK]"], self.word_shape["[UNK]"]
            )
            input_pronunciation_ids = self.build_inputs_with_special_tokens(
                pronunciation_ids,
                pair_pronunciation_ids,
                self.word_pronunciation["[UNK]"],
                self.word_pronunciation["[UNK]"],
            )
        else:
            sequence = ids + pair_ids if pair_ids else ids
            token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair_ids else [])
            input_shape_ids = shape_ids + pair_shape_ids if pair_shape_ids else shape_ids
            input_pronunciation_ids = (
                pronunciation_ids + pair_pronunciation_ids if pair_pronunciation_ids else pronunciation_ids
            )

        # Build output dictionary
        encoded_inputs["input_ids"] = sequence
        encoded_inputs["input_shape_ids"] = input_shape_ids
        encoded_inputs["input_pronunciation_ids"] = input_pronunciation_ids
        if return_token_type_ids:
            encoded_inputs["token_type_ids"] = token_type_ids
        if return_special_tokens_mask:
            if add_special_tokens:
                encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
            else:
                encoded_inputs["special_tokens_mask"] = [0] * len(sequence)

        # Check lengths
        self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)

        # Padding
        if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
            encoded_inputs = self.pad(
                encoded_inputs,
                max_length=max_length,
                padding=padding_strategy.value,
                pad_to_multiple_of=pad_to_multiple_of,
                padding_side=padding_side,
                return_attention_mask=return_attention_mask,
            )

        if return_length:
            encoded_inputs["length"] = len(encoded_inputs["input_ids"])

        batch_outputs = BatchEncoding(
            encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
        )

        return batch_outputs

    def _pad(
        self,
        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
        max_length: Optional[int] = None,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[str] = None,
        return_attention_mask: Optional[bool] = None,
    ) -> dict:
        # Load from model defaults
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        required_input = encoded_inputs[self.model_input_names[0]]

        if padding_strategy == PaddingStrategy.LONGEST:
            max_length = len(required_input)

        if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
            max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of

        needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length

        # Initialize attention mask if not present.
        if return_attention_mask and "attention_mask" not in encoded_inputs:
            encoded_inputs["attention_mask"] = [1] * len(required_input)

        if needs_to_be_padded:
            difference = max_length - len(required_input)
            padding_side = padding_side if padding_side is not None else self.padding_side

            if padding_side == "right":
                if return_attention_mask:
                    encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
                if "token_type_ids" in encoded_inputs:
                    encoded_inputs["token_type_ids"] = (
                        encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
                    )
                if "special_tokens_mask" in encoded_inputs:
                    encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
                for key in ["input_shape_ids", "input_pronunciation_ids"]:
                    if key in encoded_inputs:
                        encoded_inputs[key] = encoded_inputs[key] + [self.pad_token_id] * difference
                encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
            elif padding_side == "left":
                if return_attention_mask:
                    encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
                if "token_type_ids" in encoded_inputs:
                    encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
                        "token_type_ids"
                    ]
                if "special_tokens_mask" in encoded_inputs:
                    encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
                for key in ["input_shape_ids", "input_pronunciation_ids"]:
                    if key in encoded_inputs:
                        encoded_inputs[key] = [self.pad_token_id] * difference + encoded_inputs[key]
                encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
            else:
                raise ValueError("Invalid padding strategy:" + str(padding_side))

        return encoded_inputs

    def _batch_encode_plus(
        self,
        batch_text_or_text_pairs: Union[
            List[TextInput],
            List[TextInputPair],
            List[PreTokenizedInput],
            List[PreTokenizedInputPair],
            List[EncodedInput],
            List[EncodedInputPair],
        ],
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[str] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        def get_input_ids(text):
            if isinstance(text, str):
                tokens = self.tokenize(text, **kwargs)
                tokens_ids = self.convert_tokens_to_ids(tokens)
                tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens)
                tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens)
                return tokens_ids, tokens_shape_ids, tokens_proun_ids
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
                if is_split_into_words:
                    tokens = list(
                        itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text))
                    )
                    tokens_ids = self.convert_tokens_to_ids(tokens)
                    tokens_shape_ids = self.convert_tokens_to_shape_ids(tokens)
                    tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(tokens)
                    return tokens_ids, tokens_shape_ids, tokens_proun_ids
                else:
                    tokens_ids = self.convert_tokens_to_ids(text)
                    tokens_shape_ids = self.convert_tokens_to_shape_ids(text)
                    tokens_proun_ids = self.convert_tokens_to_pronunciation_ids(text)
                    return tokens_ids, tokens_shape_ids, tokens_proun_ids
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
                return text, [0] * len(text), [0] * len(text)  # shape and proun id is pad_value
            else:
                raise ValueError(
                    "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
                )

        if return_offsets_mapping:
            raise NotImplementedError(
                "return_offset_mapping is not available when using Python tokenizers. "
                "To use this feature, change your tokenizer to one deriving from "
                "transformers.PreTrainedTokenizerFast."
            )

        input_ids = []
        input_shape_ids = []
        input_pronunciation_ids = []
        for ids_or_pair_ids in batch_text_or_text_pairs:
            if not isinstance(ids_or_pair_ids, (list, tuple)):
                ids, pair_ids = ids_or_pair_ids, None
            elif is_split_into_words and not isinstance(ids_or_pair_ids[0], (list, tuple)):
                ids, pair_ids = ids_or_pair_ids, None
            else:
                ids, pair_ids = ids_or_pair_ids

            first_ids, first_shape_ids, first_proun_ids = get_input_ids(ids)
            if pair_ids is not None:
                second_ids, second_shape_ids, second_proun_ids = get_input_ids(pair_ids)
            else:
                second_ids, second_shape_ids, second_proun_ids = None, None, None

            input_ids.append((first_ids, second_ids))
            input_shape_ids.append((first_shape_ids, second_shape_ids))
            input_pronunciation_ids.append((first_proun_ids, second_proun_ids))

        batch_outputs = self._batch_prepare_for_model(
            input_ids,
            batch_shape_ids_pairs=input_shape_ids,
            batch_pronunciation_ids_pairs=input_pronunciation_ids,
            add_special_tokens=add_special_tokens,
            padding_strategy=padding_strategy,
            truncation_strategy=truncation_strategy,
            max_length=max_length,
            stride=stride,
            pad_to_multiple_of=pad_to_multiple_of,
            padding_side=padding_side,
            return_attention_mask=return_attention_mask,
            return_token_type_ids=return_token_type_ids,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_length=return_length,
            return_tensors=return_tensors,
            verbose=verbose,
        )

        return BatchEncoding(batch_outputs)

    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def _batch_prepare_for_model(
        self,
        batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]],
        batch_shape_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]],
        batch_pronunciation_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]],
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[str] = None,
        return_tensors: Optional[str] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_length: bool = False,
        verbose: bool = True,
    ) -> BatchEncoding:
        """
        Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
        adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
        manages a moving window (with user defined stride) for overflowing tokens

        Args:
            batch_ids_pairs: list of tokenized input ids or input ids pairs
            batch_shape_ids_pairs: list of tokenized input shape ids or input shape ids pairs
            batch_pronunciation_ids_pairs: list of tokenized input pronunciation ids or input pronunciation ids pairs
        """

        batch_outputs = {}
        for i, (first_ids, second_ids) in enumerate(batch_ids_pairs):
            first_shape_ids, second_shape_ids = batch_shape_ids_pairs[i]
            first_pronunciation_ids, second_pronunciation_ids = batch_pronunciation_ids_pairs[i]
            outputs = self.prepare_for_model(
                first_ids,
                first_shape_ids,
                first_pronunciation_ids,
                pair_ids=second_ids,
                pair_shape_ids=second_shape_ids,
                pair_pronunciation_ids=second_pronunciation_ids,
                add_special_tokens=add_special_tokens,
                padding=PaddingStrategy.DO_NOT_PAD.value,  # we pad in batch afterward
                truncation=truncation_strategy.value,
                max_length=max_length,
                stride=stride,
                pad_to_multiple_of=None,  # we pad in batch afterward
                padding_side=None,  # we pad in batch afterward
                return_attention_mask=False,  # we pad in batch afterward
                return_token_type_ids=return_token_type_ids,
                return_overflowing_tokens=return_overflowing_tokens,
                return_special_tokens_mask=return_special_tokens_mask,
                return_length=return_length,
                return_tensors=None,  # We convert the whole batch to tensors at the end
                prepend_batch_axis=False,
                verbose=verbose,
            )

            for key, value in outputs.items():
                if key not in batch_outputs:
                    batch_outputs[key] = []
                batch_outputs[key].append(value)

        batch_outputs = self.pad(
            batch_outputs,
            padding=padding_strategy.value,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            padding_side=padding_side,
            return_attention_mask=return_attention_mask,
        )

        batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)

        return batch_outputs

    # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id
    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        return self.vocab.get(token, self.vocab.get(self.unk_token))

    def _convert_token_to_shape_id(self, token):
        """Converts a token (str) in an shape_id using the shape vocab."""
        return self.word_shape.get(token, self.word_shape.get(self.unk_token))

    def convert_tokens_to_shape_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]:
        if tokens is None:
            return None

        ids = []
        for token in tokens:
            ids.append(self._convert_token_to_shape_id(token))
        return ids

    def _convert_token_to_pronunciation_id(self, token):
        """Converts a token (str) in an shape_id using the shape vocab."""
        return self.word_pronunciation.get(token, self.word_pronunciation.get(self.unk_token))

    def convert_tokens_to_pronunciation_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]:
        if tokens is None:
            return None

        ids = []
        for token in tokens:
            ids.append(self._convert_token_to_pronunciation_id(token))
        return ids

    # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.ids_to_tokens.get(index, self.unk_token)

    # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string
    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""
        out_string = " ".join(tokens).replace(" ##", "").strip()
        return out_string

    def build_inputs_with_special_tokens(
        self,
        token_ids_0: List[int],
        token_ids_1: Optional[List[int]] = None,
        cls_token_id: Optional[int] = None,
        sep_token_id: Optional[int] = None,
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A BERT sequence has the following format:

        - single sequence: `[CLS] X [SEP]`
        - pair of sequences: `[CLS] A [SEP] B [SEP]`

        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """
        cls = [self.cls_token_id] if cls_token_id is None else [cls_token_id]
        sep = [self.sep_token_id] if sep_token_id is None else [sep_token_id]
        if token_ids_1 is None:
            return cls + token_ids_0 + sep
        return cls + token_ids_0 + sep + token_ids_1 + sep

    # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """

        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is not None:
            return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1]

    # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
        pair mask has the following format:

        ```
        0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence |
        ```

        If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
        return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, str, str]:
        index = 0
        if os.path.isdir(save_directory):
            vocab_file = os.path.join(
                save_directory,
                (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"],
            )
            word_shape_file = os.path.join(
                save_directory,
                (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["word_shape_file"],
            )
            word_pronunciation_file = os.path.join(
                save_directory,
                (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["word_pronunciation_file"],
            )
        else:
            raise ValueError(
                f"Can't find a directory at path '{save_directory}'. To load the vocabulary from a Google "
                "pretrained model use `tokenizer = RoCBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
            )

        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning(
                        f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
                        " Please check that the vocabulary is not corrupted!"
                    )
                    index = token_index
                writer.write(token + "\n")
                index += 1

        with open(word_shape_file, "w", encoding="utf8") as writer:
            json.dump(self.word_shape, writer, ensure_ascii=False, indent=4, separators=(", ", ": "))

        with open(word_pronunciation_file, "w", encoding="utf8") as writer:
            json.dump(self.word_pronunciation, writer, ensure_ascii=False, indent=4, separators=(", ", ": "))

        return (
            vocab_file,
            word_shape_file,
            word_pronunciation_file,
        )


# Copied from  transformers.models.bert.tokenization_bert.BasicTokenizer with BasicTokenizer->RoCBertBasicTokenizer
class RoCBertBasicTokenizer:
    """
    Constructs a RoCBertBasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).

    Args:
        do_lower_case (`bool`, *optional*, defaults to `True`):
            Whether or not to lowercase the input when tokenizing.
        never_split (`Iterable`, *optional*):
            Collection of tokens which will never be split during tokenization. Only has an effect when
            `do_basic_tokenize=True`
        tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
            Whether or not to tokenize Chinese characters.

            This should likely be deactivated for Japanese (see this
            [issue](https://github.com/huggingface/transformers/issues/328)).
        strip_accents (`bool`, *optional*):
            Whether or not to strip all accents. If this option is not specified, then it will be determined by the
            value for `lowercase` (as in the original BERT).
        do_split_on_punc (`bool`, *optional*, defaults to `True`):
            In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
            the full context of the words, such as contractions.
    """

    def __init__(
        self,
        do_lower_case=True,
        never_split=None,
        tokenize_chinese_chars=True,
        strip_accents=None,
        do_split_on_punc=True,
    ):
        if never_split is None:
            never_split = []
        self.do_lower_case = do_lower_case
        self.never_split = set(never_split)
        self.tokenize_chinese_chars = tokenize_chinese_chars
        self.strip_accents = strip_accents
        self.do_split_on_punc = do_split_on_punc

    def tokenize(self, text, never_split=None):
        """
        Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.

        Args:
            never_split (`List[str]`, *optional*)
                Kept for backward compatibility purposes. Now implemented directly at the base class level (see
                [`PreTrainedTokenizer.tokenize`]) List of token not to split.
        """
        # union() returns a new set by concatenating the two sets.
        never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
        text = self._clean_text(text)

        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
        if self.tokenize_chinese_chars:
            text = self._tokenize_chinese_chars(text)
        # prevents treating the same character with different unicode codepoints as different characters
        unicode_normalized_text = unicodedata.normalize("NFC", text)
        orig_tokens = whitespace_tokenize(unicode_normalized_text)
        split_tokens = []
        for token in orig_tokens:
            if token not in never_split:
                if self.do_lower_case:
                    token = token.lower()
                    if self.strip_accents is not False:
                        token = self._run_strip_accents(token)
                elif self.strip_accents:
                    token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token, never_split))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

    def _run_split_on_punc(self, text, never_split=None):
        """Splits punctuation on a piece of text."""
        if not self.do_split_on_punc or (never_split is not None and text in never_split):
            return [text]
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]

    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)

    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if (
            (cp >= 0x4E00 and cp <= 0x9FFF)
            or (cp >= 0x3400 and cp <= 0x4DBF)  #
            or (cp >= 0x20000 and cp <= 0x2A6DF)  #
            or (cp >= 0x2A700 and cp <= 0x2B73F)  #
            or (cp >= 0x2B740 and cp <= 0x2B81F)  #
            or (cp >= 0x2B820 and cp <= 0x2CEAF)  #
            or (cp >= 0xF900 and cp <= 0xFAFF)
            or (cp >= 0x2F800 and cp <= 0x2FA1F)  #
        ):  #
            return True

        return False

    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xFFFD or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


# Copied from  transformers.models.bert.tokenization_bert.WordpieceTokenizer with WordpieceTokenizer->RoCBertWordpieceTokenizer
class RoCBertWordpieceTokenizer:
    """Runs WordPiece tokenization."""

    def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """
        Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
        tokenization using the given vocabulary.

        For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.

        Args:
            text: A single token or whitespace separated tokens. This should have
                already been passed through *BasicTokenizer*.

        Returns:
            A list of wordpiece tokens.
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens


__all__ = ["RoCBertTokenizer"]
