# coding=utf-8
# Copyright 2022, Google and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PEGASUS-X model configuration"""

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)


class PegasusXConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`PegasusXModel`]. It is used to instantiate a
    PEGASUS-X model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the PEGASUS-X
    [google/pegasus-x-large](https://huggingface.co/google/pegasus-x-large) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 96103):
            Vocabulary size of the PEGASUS-X model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`PegasusXModel`].
        d_model (`int`, *optional*, defaults to 1024):
            Dimension of the layers and the pooler layer.
        encoder_layers (`int`, *optional*, defaults to 16):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 16):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 4096):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 4096):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        max_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models)
        forced_eos_token_id (`int`, *optional*, defaults to 1):
            The id of the token to force as the last generated token when `max_length` is reached. Usually set to
            `eos_token_id`.
        num_global_tokens (`int`, *optional*, defaults to 128):
            Number of global tokens to use for the encoder
        block_size (`int`, *optional*, defaults to 512):
            Block size for encoder local attention. Sequence length should be an exact multiple of block size.
            block_size must be a multiple of 2 if stagger_local_block is True
        stagger_local_block (`bool`, *optional*, defaults to `True`):
            Whether to stagger every other local attention by half a block

    Example:

    ```python
    >>> from transformers import PegasusXConfig, PegasusXModel

    >>> # Initializing a PEGASUS google/pegasus-x-large style configuration
    >>> configuration = PegasusXConfig()

    >>> # Initializing a model (with random weights) from the google/pegasus-x-large style configuration
    >>> model = PegasusXModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "pegasus_x"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}

    def __init__(
        self,
        vocab_size=96103,
        max_position_embeddings=16384,
        encoder_layers=16,
        encoder_ffn_dim=4096,
        encoder_attention_heads=16,
        decoder_layers=16,
        decoder_ffn_dim=4096,
        decoder_attention_heads=16,
        encoder_layerdrop=0.0,
        decoder_layerdrop=0.0,
        use_cache=True,
        is_encoder_decoder=True,
        activation_function="gelu",
        d_model=1024,
        dropout=0.1,
        attention_dropout=0.0,
        activation_dropout=0.0,
        init_std=0.02,
        decoder_start_token_id=0,
        scale_embedding=True,
        pad_token_id=0,
        eos_token_id=1,
        forced_eos_token_id=1,
        num_global_tokens=32,
        block_size=512,
        stagger_local_blocks=True,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.d_model = d_model
        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.encoder_layerdrop = encoder_layerdrop
        self.decoder_layerdrop = decoder_layerdrop
        self.use_cache = use_cache
        self.num_hidden_layers = encoder_layers
        self.scale_embedding = scale_embedding  # scale factor will be sqrt(d_model) if True

        self.num_global_tokens = num_global_tokens
        self.block_size = block_size
        self.stagger_local_blocks = stagger_local_blocks

        super().__init__(
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            is_encoder_decoder=is_encoder_decoder,
            decoder_start_token_id=decoder_start_token_id,
            forced_eos_token_id=forced_eos_token_id,
            **kwargs,
        )

    @property
    def num_attention_heads(self) -> int:
        return self.encoder_attention_heads

    @property
    def hidden_size(self) -> int:
        return self.d_model


__all__ = ["PegasusXConfig"]
