# coding=utf-8
# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LED model configuration"""

from typing import List, Union

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)


class LEDConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`LEDModel`]. It is used to instantiate an LED
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LED
    [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50265):
            Vocabulary size of the LED model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`LEDModel`] or [`TFLEDModel`].
        d_model (`int`, *optional*, defaults to 1024):
            Dimensionality of the layers and the pooler layer.
        encoder_layers (`int`, *optional*, defaults to 12):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 12):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        classifier_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for classifier.
        max_encoder_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that the encoder might ever be used with.
        max_decoder_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that the decoder might ever be used with.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models)

    Example:

    ```python
    >>> from transformers import LEDModel, LEDConfig

    >>> # Initializing a LED allenai/led-base-16384 style configuration
    >>> configuration = LEDConfig()

    >>> # Initializing a model from the allenai/led-base-16384 style configuration
    >>> model = LEDModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "led"
    attribute_map = {
        "num_attention_heads": "encoder_attention_heads",
        "hidden_size": "d_model",
        "attention_probs_dropout_prob": "attention_dropout",
        "initializer_range": "init_std",
    }

    def __init__(
        self,
        vocab_size=50265,
        max_encoder_position_embeddings=16384,
        max_decoder_position_embeddings=1024,
        encoder_layers=12,
        encoder_ffn_dim=4096,
        encoder_attention_heads=16,
        decoder_layers=12,
        decoder_ffn_dim=4096,
        decoder_attention_heads=16,
        encoder_layerdrop=0.0,
        decoder_layerdrop=0.0,
        use_cache=True,
        is_encoder_decoder=True,
        activation_function="gelu",
        d_model=1024,
        dropout=0.1,
        attention_dropout=0.0,
        activation_dropout=0.0,
        init_std=0.02,
        decoder_start_token_id=2,
        classifier_dropout=0.0,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        attention_window: Union[List[int], int] = 512,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_encoder_position_embeddings = max_encoder_position_embeddings
        self.max_decoder_position_embeddings = max_decoder_position_embeddings
        self.d_model = d_model
        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.encoder_layerdrop = encoder_layerdrop
        self.decoder_layerdrop = decoder_layerdrop
        self.classifier_dropout = classifier_dropout
        self.use_cache = use_cache
        self.num_hidden_layers = encoder_layers
        self.attention_window = attention_window

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            is_encoder_decoder=is_encoder_decoder,
            decoder_start_token_id=decoder_start_token_id,
            **kwargs,
        )


__all__ = ["LEDConfig"]
