# coding=utf-8
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Jamba model."""

import math
from typing import Any, Dict, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn

from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache  # we need __iter__ and __len__ of pkv
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
    AttentionMaskConverter,
)
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import (
    MoeCausalLMOutputWithPast,
    MoeModelOutputWithPast,
    SequenceClassifierOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    can_return_tuple,
    logging,
    replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ...utils.import_utils import (
    is_causal_conv1d_available,
    is_mamba_ssm_available,
)
from .configuration_jamba import JambaConfig


if is_flash_attn_available():
    from ...modeling_flash_attention_utils import _flash_attention_forward


if is_mamba_ssm_available():
    from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
    from mamba_ssm.ops.triton.selective_state_update import selective_state_update
else:
    selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None

if is_causal_conv1d_available():
    from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
    causal_conv1d_update, causal_conv1d_fn = None, None

is_fast_path_available = all(
    (selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
)


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "JambaConfig"


# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func with gate->router
def load_balancing_loss_func(
    router_logits: Union[torch.Tensor, Tuple[torch.Tensor], None],
    num_experts: Optional[int] = None,
    top_k=2,
    attention_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, int]:
    r"""
    Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.

    See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
    function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
    experts is too unbalanced.

    Args:
        router_logits:
            Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of
            shape [batch_size X sequence_length, num_experts].
        num_experts:
            Number of experts
        top_k:
            The number of experts to route per-token, can be also interpreted as the `top-k` routing
            parameter.
        attention_mask (`torch.Tensor`, *optional*):
            The attention_mask used in forward function
            shape [batch_size X sequence_length] if not None.

    Returns:
        The auxiliary loss.
    """
    if router_logits is None or not isinstance(router_logits, tuple):
        return 0

    if isinstance(router_logits, tuple):
        compute_device = router_logits[0].device
        concatenated_router_logits = torch.cat(
            [layer_router.to(compute_device) for layer_router in router_logits], dim=0
        )

    routing_weights = torch.nn.functional.softmax(concatenated_router_logits, dim=-1)

    _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)

    expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)

    if attention_mask is None:
        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = torch.mean(expert_mask.float(), dim=0)

        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.mean(routing_weights, dim=0)
    else:
        batch_size, sequence_length = attention_mask.shape
        num_hidden_layers = concatenated_router_logits.shape[0] // (batch_size * sequence_length)

        # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
        expert_attention_mask = (
            attention_mask[None, :, :, None, None]
            .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
            .reshape(-1, top_k, num_experts)
            .to(compute_device)
        )

        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
            expert_attention_mask, dim=0
        )

        # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
        router_per_expert_attention_mask = (
            attention_mask[None, :, :, None]
            .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
            .reshape(-1, num_experts)
            .to(compute_device)
        )

        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
            router_per_expert_attention_mask, dim=0
        )

    overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
    return overall_loss * num_experts


# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Jamba
class JambaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        JambaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class HybridMambaAttentionDynamicCache(DynamicCache):
    """
    A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
    (which has a constant shape regardless of seq_len).

    This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
    and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
    For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
    while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
    For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
    while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
    and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
    """

    def __init__(self, config, batch_size, dtype=torch.float16, device=None):
        super().__init__()
        self.dtype = dtype
        self.layers_block_type = config.layers_block_type
        self.has_previous_state = False  # only used by mamba
        intermediate_size = config.mamba_expand * config.hidden_size
        ssm_state_size = config.mamba_d_state
        conv_kernel_size = config.mamba_d_conv
        self.conv_states = []
        self.ssm_states = []
        self.transformer_layers = []
        for i in range(config.num_hidden_layers):
            if self.layers_block_type[i] == "mamba":
                self.conv_states += [
                    torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
                ]
                self.ssm_states += [
                    torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
                ]
            else:
                self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
                self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
                self.transformer_layers.append(i)

        self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
        self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Update the cache
        if self.key_cache[layer_idx].shape[-1] == 0:
            self.key_cache[layer_idx] = key_states
            self.value_cache[layer_idx] = value_states
        else:
            self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
            self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)

        return self.key_cache[layer_idx], self.value_cache[layer_idx]

    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Reorders the cache for beam search, given the selected beam indices."""
        for layer_idx in range(len(self.key_cache)):
            device = self.key_cache[layer_idx].device
            self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
            device = self.value_cache[layer_idx].device
            self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))

            device = self.conv_states[layer_idx].device
            self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
            device = self.ssm_states[layer_idx].device
            self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # take any layer that contains cache and not empty tensor
        layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
        if len(self.key_cache) <= layer_idx:
            return 0
        return self.key_cache[layer_idx].shape[-2]

    def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
        raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")

    @classmethod
    def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
        raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")


# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Jamba
class JambaAttention(nn.Module):
    """
    Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
    and "Generating Long Sequences with Sparse Transformers".
    """

    def __init__(self, config: JambaConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.is_causal = True
        self.attention_dropout = config.attention_dropout

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if past_key_value is not None:
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
            attn_weights = attn_weights + causal_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


# Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Jamba
class JambaFlashAttention2(JambaAttention):
    """
    Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
        self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ):
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        # Flash attention requires the input to have the shape
        # batch_size x seq_length x head_dim x hidden_dim
        # therefore we just need to keep the original shape
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if past_key_value is not None:
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        dropout_rate = 0.0 if not self.training else self.attention_dropout

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in float16 just to be sure everything works as expected.
        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        # Reashape to the expected shape for Flash Attention
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        attn_output = _flash_attention_forward(
            query_states,
            key_states,
            value_states,
            attention_mask,
            q_len,
            dropout=dropout_rate,
            sliding_window=getattr(self.config, "sliding_window", None),
            is_causal=self.is_causal,
            use_top_left_mask=self._flash_attn_uses_top_left_mask,
        )

        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


# Adapted from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Jamba
class JambaSdpaAttention(JambaAttention):
    """
    Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
    `JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
    SDPA API.
    """

    # Adapted from JambaAttention.forward
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if output_attentions:
            # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "JambaModel is using JambaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
            )

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if past_key_value is not None:
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        causal_mask = attention_mask
        if attention_mask is not None:
            causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]

        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query_states.device.type == "cuda" and attention_mask is not None:
            query_states = query_states.contiguous()
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
        is_causal = True if self.is_causal and causal_mask is None and q_len > 1 else False

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=causal_mask,
            dropout_p=self.attention_dropout if self.training else 0.0,
            is_causal=is_causal,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        return attn_output, None, past_key_value


JAMBA_ATTENTION_CLASSES = {
    "eager": JambaAttention,
    "flash_attention_2": JambaFlashAttention2,
    "sdpa": JambaSdpaAttention,
}


# Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
class JambaMambaMixer(nn.Module):
    """
    Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
    A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
    ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
    and is why Mamba is called **selective** state spaces)
    """

    def __init__(self, config: JambaConfig, layer_idx):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.hidden_size = config.hidden_size
        self.ssm_state_size = config.mamba_d_state
        self.conv_kernel_size = config.mamba_d_conv
        self.intermediate_size = config.mamba_expand * config.hidden_size
        self.time_step_rank = config.mamba_dt_rank
        self.use_conv_bias = config.mamba_conv_bias
        self.use_bias = config.mamba_proj_bias
        self.conv1d = nn.Conv1d(
            in_channels=self.intermediate_size,
            out_channels=self.intermediate_size,
            bias=self.use_conv_bias,
            kernel_size=self.conv_kernel_size,
            groups=self.intermediate_size,
            padding=self.conv_kernel_size - 1,
        )

        self.activation = config.hidden_act
        self.act = ACT2FN[config.hidden_act]

        self.use_fast_kernels = config.use_mamba_kernels

        # projection of the input hidden states
        self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias)
        # selective projection used to make dt, B and C input dependant
        self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
        # time step projection (discretization)
        self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)

        # S4D real initialization. These are not discretized!
        # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
        A = torch.arange(1, self.ssm_state_size + 1)[None, :]
        A = A.expand(self.intermediate_size, -1).contiguous()

        self.A_log = nn.Parameter(torch.log(A))
        self.D = nn.Parameter(torch.ones(self.intermediate_size))
        self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)

        self.dt_layernorm = JambaRMSNorm(self.time_step_rank, eps=config.rms_norm_eps)
        self.b_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
        self.c_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)

        if not is_fast_path_available:
            logger.warning_once(
                "The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
                " is None. To install follow https://github.com/state-spaces/mamba/#installation and"
                " https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config"
            )

    def cuda_kernels_forward(
        self,
        hidden_states: torch.Tensor,
        cache_params: HybridMambaAttentionDynamicCache = None,
        attention_mask: Optional[torch.LongTensor] = None,
    ):
        batch_size, seq_len, _ = hidden_states.shape
        use_precomputed_states = (
            cache_params is not None
            and cache_params.has_previous_state
            and seq_len == 1
            and cache_params.conv_states[self.layer_idx].shape[0]
            == cache_params.ssm_states[self.layer_idx].shape[0]
            == batch_size
        )
        # 1. Gated MLP's linear projection
        projected_states = self.in_proj(hidden_states).transpose(1, 2)

        # We can't use `mamba_inner_fn` even if in training and without cache params because we have the
        # inner layernorms which isn't supported by this fused kernel
        hidden_states, gate = projected_states.chunk(2, dim=1)

        if attention_mask is not None:
            hidden_states = hidden_states * attention_mask.unsqueeze(1)

        # 2. Convolution sequence transformation
        conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
        if use_precomputed_states:
            hidden_states = causal_conv1d_update(
                hidden_states.squeeze(-1),
                cache_params.conv_states[self.layer_idx],
                conv_weights,
                self.conv1d.bias,
                self.activation,
            )
            hidden_states = hidden_states.unsqueeze(-1)
        else:
            if cache_params is not None:
                conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0))
                cache_params.conv_states[self.layer_idx].copy_(conv_states)
            hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation)

        if attention_mask is not None:
            hidden_states = hidden_states * attention_mask.unsqueeze(1)

        # 3. State Space Model sequence transformation
        # 3.a. input varying initialization of time_step, B and C
        ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
        time_step, B, C = torch.split(
            ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
        )

        time_step = self.dt_layernorm(time_step)
        B = self.b_layernorm(B)
        C = self.c_layernorm(C)

        # Here we need to apply dt_proj without the bias, as the bias is added in the selective scan kernel.
        # This is a hack to apply dt_proj while still using the forward pass of `torch.nn.Linear`, which is needed
        # in order to make quantization work. Quantization code replaces `torch.nn.Linear` layers with quantized
        # linear layers, and requires to call the forward pass directly.
        # Quantized model can't work with the original code:
        # ```discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)```
        time_proj_bias = self.dt_proj.bias.data
        with torch.no_grad():
            self.dt_proj.bias.data = torch.zeros_like(self.dt_proj.bias.data)
        discrete_time_step = self.dt_proj(time_step).transpose(1, 2)
        with torch.no_grad():
            self.dt_proj.bias.data = time_proj_bias

        A = -torch.exp(self.A_log.float())
        # 3.c perform the recurrence y ← SSM(A, B, C)(x)
        time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None
        if use_precomputed_states:
            scan_outputs = selective_state_update(
                cache_params.ssm_states[self.layer_idx],
                hidden_states[..., 0],
                discrete_time_step[..., 0],
                A,
                B[:, 0],
                C[:, 0],
                self.D,
                gate[..., 0],
                time_proj_bias,
                dt_softplus=True,
            ).unsqueeze(-1)
        else:
            scan_outputs, ssm_state = selective_scan_fn(
                hidden_states,
                discrete_time_step,
                A,
                B.transpose(1, 2),
                C.transpose(1, 2),
                self.D.float(),
                gate,
                time_proj_bias,
                delta_softplus=True,
                return_last_state=True,
            )
            if ssm_state is not None and cache_params is not None:
                cache_params.ssm_states[self.layer_idx].copy_(ssm_state)

        # 4. Final linear projection
        contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))

        return contextualized_states

    # fmt: off
    def slow_forward(self, input_states, cache_params: HybridMambaAttentionDynamicCache = None, attention_mask: Optional[torch.LongTensor] = None):
        batch_size, seq_len, _ = input_states.shape
        dtype = input_states.dtype
        # 1. Gated MLP's linear projection
        projected_states = self.in_proj(input_states).transpose(1, 2)                   # [batch, 2 * intermediate_size, seq_len]
        hidden_states, gate = projected_states.chunk(2, dim=1)

        if attention_mask is not None:
            hidden_states = hidden_states * attention_mask.unsqueeze(1)

        use_cache = isinstance(cache_params, HybridMambaAttentionDynamicCache)
        # 2. Convolution sequence transformation
        if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size:
            if self.training:
                # In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass
                ssm_state = cache_params.ssm_states[self.layer_idx].clone()
            else:
                ssm_state = cache_params.ssm_states[self.layer_idx]

            ssm_state = ssm_state.to(hidden_states.device)

            if cache_params.has_previous_state and seq_len == 1 and \
                    cache_params.conv_states[self.layer_idx].shape[0] == batch_size:
                conv_state = cache_params.conv_states[self.layer_idx]                   # [batch, intermediate_size, conv_kernel_size]
                conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
                conv_state[:, :, -1] = hidden_states[:, :, 0]
                cache_params.conv_states[self.layer_idx] = conv_state
                hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
                if self.use_conv_bias:
                    hidden_states += self.conv1d.bias
                hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1)         # [batch, intermediate_size, 1] : decoding
            else:
                conv_state = nn.functional.pad(
                    hidden_states,
                    (self.conv_kernel_size - hidden_states.shape[-1], 0)
                )
                cache_params.conv_states[self.layer_idx] = conv_state
                hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])     # [batch, intermediate_size, seq_len]
        else:
            ssm_state = torch.zeros(
                (batch_size, self.intermediate_size, self.ssm_state_size),
                device=hidden_states.device, dtype=dtype
            )
            hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])         # [batch, intermediate_size, seq_len]

        if attention_mask is not None:
            hidden_states = hidden_states * attention_mask.unsqueeze(1)

        # 3. State Space Model sequence transformation
        # 3.a. Selection:  [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
        ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
        time_step, B, C = torch.split(
            ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
        )

        time_step = self.dt_layernorm(time_step)
        B = self.b_layernorm(B)
        C = self.c_layernorm(C)

        discrete_time_step = self.dt_proj(time_step)                                    # [batch, seq_len, intermediate_size]
        discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]

        # 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
        A = -torch.exp(self.A_log.float())                                              # [intermediate_size, ssm_state_size]
        discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size]
        discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float()       # [batch, intermediate_size, seq_len, ssm_state_size]
        deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
        # 3.c perform the recurrence y ← SSM(A, B, C)(x)
        scan_outputs = []
        for i in range(seq_len):
            ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :]      # [batch, intermediate_size, ssm_state]
            scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1))  # [batch, intermediate_size, 1]
            scan_outputs.append(scan_output[:, :, 0])
        scan_output = torch.stack(scan_outputs, dim=-1)                                # [batch, intermediate_size, seq_len]
        scan_output = scan_output + (hidden_states * self.D[None, :, None])
        scan_output = (scan_output * self.act(gate))

        if use_cache:
            cache_params.ssm_states[self.layer_idx] = ssm_state

        # 4. Final linear projection
        contextualized_states = self.out_proj(scan_output.transpose(1, 2))  # [batch, seq_len, hidden_size]
        return contextualized_states
    # fmt: on

    def forward(
        self,
        hidden_states,
        cache_params: HybridMambaAttentionDynamicCache = None,
        attention_mask: Optional[torch.LongTensor] = None,
    ):
        if self.use_fast_kernels:
            if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type:
                raise ValueError(
                    "Fast Mamba kernels are not available. Make sure to they are installed and that the mamba module is on a CUDA device"
                )
            return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask)
        return self.slow_forward(hidden_states, cache_params, attention_mask)


# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Jamba
class JambaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj


# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock with Mistral->Jamba
class JambaSparseMoeBlock(nn.Module):
    """
    This implementation is
    strictly equivalent to standard MoE with full capacity (no
    dropped tokens). It's faster since it formulates MoE operations
    in terms of block-sparse operations to accommodate imbalanced
    assignments of tokens to experts, whereas standard MoE either
    (1) drop tokens at the cost of reduced performance or (2) set
    capacity factor to number of experts and thus waste computation
    and memory on padding.
    """

    def __init__(self, config: JambaConfig):
        super().__init__()
        self.hidden_dim = config.hidden_size
        self.ffn_dim = config.intermediate_size
        self.num_experts = config.num_experts
        self.top_k = config.num_experts_per_tok

        self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
        self.experts = nn.ModuleList([JambaMLP(config) for _ in range(self.num_experts)])

    def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """ """
        batch_size, sequence_length, hidden_dim = hidden_states.shape

        hidden_states = hidden_states.view(-1, hidden_dim)
        # router_logits: (batch * sequence_length, n_experts)
        router_logits = self.router(hidden_states)
        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
        routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
        # we cast back to the input dtype
        routing_weights = routing_weights.to(hidden_states.dtype)

        final_hidden_states = torch.zeros(
            (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
        )

        # One hot encode the selected experts to create an expert mask
        # this will be used to easily index which expert is going to be sollicitated
        expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)

        # Loop over all available experts in the model and perform the computation on each expert
        for expert_idx in range(self.num_experts):
            expert_layer = self.experts[expert_idx]
            idx, top_x = torch.where(expert_mask[expert_idx])

            if top_x.shape[0] == 0:
                continue

            # Index the correct hidden states and compute the expert hidden state for
            # the current expert. We need to make sure to multiply the output hidden
            # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
            current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
            current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]

            # However `index_add_` only support torch tensors for indexing so we'll use
            # the `top_x` tensor here.
            final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
        final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
        return final_hidden_states, router_logits


class JambaAttentionDecoderLayer(nn.Module):
    def __init__(self, config: JambaConfig, layer_idx: int):
        super().__init__()
        num_experts = config.layers_num_experts[layer_idx]
        self.self_attn = JAMBA_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)

        ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
        self.feed_forward = ffn_layer_class(config)
        self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
        output_attentions: Optional[bool] = False,
        output_router_logits: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_router_logits (`bool`, *optional*):
                Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
                should not be returned during inference.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence.
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
        )

        # residual connection after attention
        hidden_states = residual + hidden_states

        # feed-forward (experts/MLP)
        residual = hidden_states
        hidden_states = self.pre_ff_layernorm(hidden_states)
        ff_outputs = self.feed_forward(hidden_states)
        if isinstance(ff_outputs, tuple):
            hidden_states, router_logits = ff_outputs
        else:
            hidden_states, router_logits = ff_outputs, None
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        if output_router_logits:
            outputs += (router_logits,)

        return outputs


class JambaMambaDecoderLayer(nn.Module):
    def __init__(self, config: JambaConfig, layer_idx: int):
        super().__init__()
        num_experts = config.layers_num_experts[layer_idx]
        self.mamba = JambaMambaMixer(config=config, layer_idx=layer_idx)

        ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
        self.feed_forward = ffn_layer_class(config)
        self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
        output_attentions: Optional[bool] = False,
        output_router_logits: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_router_logits (`bool`, *optional*):
                Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
                should not be returned during inference.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence.
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        hidden_states = self.mamba(
            hidden_states=hidden_states,
            cache_params=past_key_value,
            attention_mask=attention_mask,
        )
        self_attn_weights = None

        # residual connection after mamba
        hidden_states = residual + hidden_states

        # feed-forward (experts/MLP)
        residual = hidden_states
        hidden_states = self.pre_ff_layernorm(hidden_states)
        ff_outputs = self.feed_forward(hidden_states)
        if isinstance(ff_outputs, tuple):
            hidden_states, router_logits = ff_outputs
        else:
            hidden_states, router_logits = ff_outputs, None
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (past_key_value,)

        if output_router_logits:
            outputs += (router_logits,)

        return outputs


JAMBA_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`JambaConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare Jamba Model outputting raw hidden-states without any specific head on top.",
    JAMBA_START_DOCSTRING,
)
class JambaPreTrainedModel(PreTrainedModel):
    config_class = JambaConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["JambaAttentionDecoderLayer", "JambaMambaDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True  # Note: only supports HybridMambaAttentionDynamicCache
    _is_stateful = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


JAMBA_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`HybridMambaAttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            A HybridMambaAttentionDynamicCache object containing pre-computed hidden-states (keys and values in the
            self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
            Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`.
            Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and
            `(batch_size, d_inner, d_state)` respectively.
            See the `HybridMambaAttentionDynamicCache` class for more details.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        output_router_logits (`bool`, *optional*):
            Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
            should not be returned during inference.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""

ALL_DECODER_LAYER_TYPES = {"attention": JambaAttentionDecoderLayer, "mamba": JambaMambaDecoderLayer}


@add_start_docstrings(
    "The bare Jamba Model outputting raw hidden-states without any specific head on top.",
    JAMBA_START_DOCSTRING,
)
# Adapted from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->JAMBA, Mistral->Jamba
class JambaModel(JambaPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`JambaDecoderLayer`]

    Args:
        config: JambaConfig
    """

    def __init__(self, config: JambaConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        decoder_layers = []
        for i in range(config.num_hidden_layers):
            layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[i]]
            decoder_layers.append(layer_class(config, layer_idx=i))
        self.layers = nn.ModuleList(decoder_layers)

        self._attn_implementation = config._attn_implementation
        self.final_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @can_return_tuple
    @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> MoeModelOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
        hidden_states = inputs_embeds

        if use_cache and past_key_values is None:
            logger.warning_once(
                "Jamba requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. None was "
                "provided, so no cache will be returned."
            )

        if cache_position is None:
            cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
        mamba_mask = self._update_mamba_mask(attention_mask, cache_position)

        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_router_logits = () if output_router_logits else None

        for decoder_layer in self.layers:
            # Depending on the layer type we opt for 2D base attention mask (Mamba) or 4D causal mask (Attention)
            layer_mask = mamba_mask if isinstance(decoder_layer, JambaMambaDecoderLayer) else causal_mask

            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    layer_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    output_router_logits,
                    use_cache,
                    cache_position,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=layer_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    output_router_logits=output_router_logits,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                if layer_outputs[1] is not None:
                    # append attentions only of attention layers. Mamba layers return `None` as the attention weights
                    all_self_attns += (layer_outputs[1],)

            if output_router_logits:
                if layer_outputs[-1] is not None:
                    # append router logits only of expert layers. Regular MLP layers return `None` as the router logits
                    all_router_logits += (layer_outputs[-1],)

        hidden_states = self.final_layernorm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if past_key_values and not past_key_values.has_previous_state:
            past_key_values.has_previous_state = True

        next_cache = None if not use_cache else past_key_values

        return MoeModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            router_logits=all_router_logits,
        )

    def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        target_length = cache_position[-1] + 1

        causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
        if sequence_length != 1:
            causal_mask = torch.triu(causal_mask, diagonal=1)
        causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
        if attention_mask is not None:
            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
            if attention_mask.dim() == 2:
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
                causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type in ["cuda", "xpu"]
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask

    def _update_mamba_mask(self, attention_mask, cache_position):
        """
        No need for zeroing states when
            1. Cached forward
            2. Attending to all inputs
        """
        mamba_mask = attention_mask
        if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
            mamba_mask = None
        return mamba_mask


# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->Jamba
class JambaForCausalLM(JambaPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: JambaConfig):
        super().__init__(config)
        self.model = JambaModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.router_aux_loss_coef = config.router_aux_loss_coef
        self.num_experts = config.num_experts
        self.num_experts_per_tok = config.num_experts_per_tok
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @can_return_tuple
    @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
    @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **loss_kwargs,
    ) -> MoeCausalLMOutputWithPast:
        r"""
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            logits_to_keep (`int` or `torch.Tensor`, *optional*):
                If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
                If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
                This is useful when using packed tensor format (single dimension for batch and sequence length).

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, JambaForCausalLM

        >>> model = JambaForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
        >>> tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs: MoeModelOutputWithPast = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_router_logits=output_router_logits,
            cache_position=cache_position,
        )

        hidden_states = outputs.last_hidden_state
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)

        aux_loss = None
        if output_router_logits:
            aux_loss = load_balancing_loss_func(
                outputs.router_logits,
                self.num_experts,
                self.num_experts_per_tok,
                attention_mask,
            )
            if labels is not None:
                loss += self.router_aux_loss_coef * aux_loss.to(loss.device)  # make sure to reside in the same device

        return MoeCausalLMOutputWithPast(
            loss=loss,
            aux_loss=aux_loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_logits=outputs.router_logits,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        output_router_logits=False,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        **kwargs,
    ):
        # Overwitten -- has a unique cache type, `HybridMambaAttentionDynamicCache`

        empty_past_kv = past_key_values is None

        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
        #              (we can't check exception 3 while compiling)
        if not empty_past_kv:
            if (
                inputs_embeds is not None  # Exception 1
                or cache_position[-1] >= input_ids.shape[1]  # Exception 3
            ):
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]
        else:
            past_key_values = HybridMambaAttentionDynamicCache(
                self.config, input_ids.shape[0], self.dtype, device=self.device
            )

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if not empty_past_kv:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and empty_past_kv:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids.contiguous()}  # `contiguous()` needed for compilation use cases

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
                "output_router_logits": output_router_logits,
                "logits_to_keep": self.config.num_logits_to_keep,
                "cache_position": cache_position,
            }
        )
        return model_inputs


@add_start_docstrings(
    """
    The Jamba Model with a sequence classification head on top (linear layer).

    [`JambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    JAMBA_START_DOCSTRING,
)
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification with Mixtral->Jamba, MIXTRAL->JAMBA, BaseModelOutputWithPast->MoeModelOutputWithPast
class JambaForSequenceClassification(JambaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = JambaModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    @can_return_tuple
    @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
    ) -> SequenceClassifierOutputWithPast:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """

        transformer_outputs: MoeModelOutputWithPast = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        hidden_states = transformer_outputs.last_hidden_state
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            last_non_pad_token = -1
        elif input_ids is not None:
            # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
            non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
            token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
            last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
        else:
            last_non_pad_token = -1
            logger.warning_once(
                f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
            )

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


__all__ = ["JambaForCausalLM", "JambaForSequenceClassification", "JambaModel", "JambaPreTrainedModel"]
