# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Idefics3 model."""

from dataclasses import dataclass
from typing import Callable, List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss

from ...activations import ACT2FN
from ...cache_utils import DynamicCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import BaseModelOutput, ModelOutput
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from ..auto import AutoModel
from .configuration_idefics3 import Idefics3Config, Idefics3VisionConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "Idefics3Config"


@dataclass
class Idefics3BaseModelOutputWithPast(ModelOutput):
    """
    Base class for Idefics3 model's outputs that may also contain a past key/values (to speed up sequential decoding).
    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
            If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
            hidden_size)` is output.
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
            Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
            `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
            input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
            Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
            sequence_length, hidden_size)`.
            image_hidden_states of the model produced by the vision encoder
    """

    last_hidden_state: Optional[torch.FloatTensor] = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class Idefics3CausalLMOutputWithPast(ModelOutput):
    """
    Base class for Idefics causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
            Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
            sequence_length, hidden_size)`.
            image_hidden_states of the model produced by the vision encoder
    """

    loss: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None


# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2VisionEmbeddings with Idefics2->Idefics3
class Idefics3VisionEmbeddings(nn.Module):
    """
    This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable
    resolution.

    The modifications are adapted from [Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution](https://arxiv.org/abs/2307.06304)
    which allows treating images in their native aspect ratio and without the need to resize them to the same
    fixed size. In particular, we start from the original pre-trained SigLIP model
    (which uses images of fixed-size square images) and adapt it by training on images of variable resolutions.
    """

    def __init__(self, config: Idefics3VisionConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            padding="valid",
        )

        self.num_patches_per_side = self.image_size // self.patch_size
        self.num_patches = self.num_patches_per_side**2
        self.num_positions = self.num_patches
        self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)

    def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor:
        batch_size, _, max_im_h, max_im_w = pixel_values.shape

        patch_embeds = self.patch_embedding(pixel_values)
        embeddings = patch_embeds.flatten(2).transpose(1, 2)

        max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
        boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
        position_ids = torch.full(size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0)

        for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
            nb_patches_h = p_attn_mask[:, 0].sum()
            nb_patches_w = p_attn_mask[0].sum()

            fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
            fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)

            bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
            bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)

            pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
            position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids

        position_ids = position_ids.to(self.position_embedding.weight.device)
        embeddings = embeddings + self.position_embedding(position_ids)
        return embeddings


# Copied from transformers.models.siglip.modeling_siglip.eager_attention_forward
def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
    if attention_mask is not None:
        attn_weights = attn_weights + attention_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)

    attn_output = torch.matmul(attn_weights, value)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


# Copied from transformers.models.siglip.modeling_siglip.SiglipAttention with Siglip->Idefics3Vision
class Idefics3VisionAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

        # Ignore copy
        self.is_causal = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """Input shape: Batch x Time x Channel"""

        batch_size, seq_length, embed_dim = hidden_states.shape

        queries = self.q_proj(hidden_states)
        keys = self.k_proj(hidden_states)
        values = self.v_proj(hidden_states)

        queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
        keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
        values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and output_attentions:
                logger.warning_once(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )
            else:
                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            queries,
            keys,
            values,
            attention_mask,
            is_causal=self.is_causal,
            scaling=self.scale,
            dropout=0.0 if not self.training else self.dropout,
        )

        attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights


# Copied from transformers.models.siglip.modeling_siglip.SiglipMLP with Siglip->Idefics3Vision
class Idefics3VisionMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class Idefics3SimpleMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        input_size = config.vision_config.hidden_size * (config.scale_factor**2)
        output_size = config.text_config.hidden_size
        self.proj = nn.Linear(input_size, output_size, bias=False)

    def forward(self, x):
        return self.proj(x)


# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2EncoderLayer with Idefics2->Idefics3
class Idefics3EncoderLayer(nn.Module):
    def __init__(self, config: Idefics3VisionConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.self_attn = Idefics3VisionAttention(config)
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = Idefics3VisionMLP(config)
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)

    # Copied from transformers.models.siglip.modeling_siglip.SiglipEncoderLayer.forward
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor]:
        """
        Args:
            hidden_states (`torch.FloatTensor`):
                Input to the layer of shape `(batch, seq_len, embed_dim)`.
            attention_mask (`torch.FloatTensor`):
                Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
        )
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


# Copied from transformers.models.siglip.modeling_siglip.SiglipEncoder with Siglip->Idefics3
class Idefics3Encoder(nn.Module):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`Idefics3EncoderLayer`].

    Args:
        config: Idefics3Config
    """

    def __init__(self, config: Idefics3Config):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList([Idefics3EncoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    # Ignore copy
    def forward(
        self,
        inputs_embeds,
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_states = inputs_embeds
        for encoder_layer in self.layers:
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    encoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    output_attentions,
                )
            else:
                layer_outputs = encoder_layer(
                    hidden_states,
                    attention_mask,
                    output_attentions=output_attentions,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Idefics3
class Idefics3RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        Idefics3RMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class Idefics3Connector(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.scale_factor = config.scale_factor
        self.modality_projection = Idefics3SimpleMLP(config)

    def pixel_shuffle(self, x, scale_factor=2):
        bsz, seq, embed_dim = x.size()
        height = width = int(seq**0.5)
        x = x.view(bsz, height, width, embed_dim)
        x = x.view(bsz, height, int(width / scale_factor), embed_dim * scale_factor)
        x = x.permute(0, 2, 1, 3)
        x = x.reshape(bsz, int(width / scale_factor), int(height / scale_factor), embed_dim * (scale_factor**2))
        x = x.permute(0, 2, 1, 3)
        x = x.reshape(bsz, int(seq / (scale_factor**2)), embed_dim * (scale_factor**2))
        return x

    def forward(self, image_hidden_states):
        image_hidden_states = self.pixel_shuffle(image_hidden_states, self.scale_factor)
        image_hidden_states = self.modality_projection(image_hidden_states)
        return image_hidden_states


IDEFICS3_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`Idefics3Config`] or [`Idefics3VisionConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare Idefics3 Model outputting raw hidden-states without any specific head on top.",
    IDEFICS3_START_DOCSTRING,
)
class Idefics3PreTrainedModel(PreTrainedModel):
    config_class = Idefics3Config
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["Idefics3VisionAttention", "Idefics3DecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_flex_attn = True
    _supports_cache_class = True

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2PreTrainedModel._init_weights
    def _init_weights(self, module):
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.get_text_config().initializer_range
        )

        if hasattr(module, "class_embedding"):
            module.class_embedding.data.normal_(mean=0.0, std=std)

        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


IDEFICS3_VISION_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`Idefics3VisionConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The Idefics3 Vision Transformer Model outputting raw image embedding.",
    IDEFICS3_VISION_START_DOCSTRING,
)
class Idefics3VisionTransformer(Idefics3PreTrainedModel):
    config_class = Idefics3VisionConfig
    _supports_sdpa = True
    _supports_flash_attention_2 = True
    _supports_flex_attn = True

    def __init__(self, config: Idefics3VisionConfig):
        super().__init__(config)
        embed_dim = config.hidden_size

        self.embeddings = Idefics3VisionEmbeddings(config)
        self.encoder = Idefics3Encoder(config)
        self.patch_size = config.patch_size
        self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2VisionTransformer.get_input_embeddings
    def get_input_embeddings(self):
        return self.embeddings

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2VisionTransformer.set_input_embeddings
    def set_input_embeddings(self, value):
        self.embeddings = value

    def forward(
        self,
        pixel_values,
        patch_attention_mask: Optional[torch.BoolTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        batch_size = pixel_values.size(0)
        if patch_attention_mask is None:
            patch_size = self.patch_size
            patch_attention_mask = torch.ones(
                (
                    batch_size,
                    pixel_values.size(2) // patch_size,
                    pixel_values.size(3) // patch_size,
                )
            )
            patch_attention_mask = patch_attention_mask.to(dtype=torch.bool, device=pixel_values.device)

        hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)

        patch_attention_mask = patch_attention_mask.view(batch_size, -1)
        # The call to `_upad_input` in `_flash_attention_forward` is expensive
        # So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
        # avoiding passing the attention_mask, which is equivalent to attending to the full sequence
        if not torch.any(~patch_attention_mask):
            patch_attention_mask = None
        elif not self._use_flash_attention_2:
            patch_attention_mask = _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)

        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            attention_mask=patch_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = encoder_outputs[0]
        last_hidden_state = self.post_layernorm(last_hidden_state)

        if not return_dict:
            return (last_hidden_state,) + encoder_outputs[1:]

        return BaseModelOutput(
            last_hidden_state=last_hidden_state,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


IDEFICS3_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
            The tensors corresponding to the input images. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses
            [`CLIPImageProcessor`] for processing images).
        pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
            Mask to avoid performing attention on padding pixel indices.
        image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
            The hidden states of the image encoder after modality projection.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""


@add_start_docstrings(
    """Idefics3 model consisting of a SIGLIP vision encoder and Llama3 language decoder""",
    IDEFICS3_START_DOCSTRING,
)
class Idefics3Model(Idefics3PreTrainedModel):
    def __init__(self, config: Idefics3Config):
        super().__init__(config)
        self.padding_idx = self.config.text_config.pad_token_id
        self.vocab_size = self.config.text_config.vocab_size

        self.vision_model = Idefics3VisionTransformer._from_config(config.vision_config)
        self.connector = Idefics3Connector(config)
        self.text_model = AutoModel.from_config(config.text_config)

        self.image_seq_len = int(
            ((config.vision_config.image_size // config.vision_config.patch_size) ** 2) / (config.scale_factor**2)
        )
        self.image_token_id = self.config.image_token_id

        self._use_flash_attention_2 = config.text_config._attn_implementation == "flash_attention_2"

        self.post_init()

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2Model.enable_input_require_grads
    def enable_input_require_grads(self):
        """
        Enables the gradients for the input embeddings.

        This is useful for lora when using gradient checkpointing.
        c.f. https://github.com/huggingface/peft/issues/1402#issuecomment-1913675032

        Override to set output.requires_grad = True for both the decoder's and vision model's embeddings.
        """

        def get_lowest_module(module):
            if len(list(module.children())) == 0:
                # If the module has no children, it is a leaf module (e.g., Linear, Conv2d, etc.)
                return module
            else:
                # Recursively call the function on each child module
                return get_lowest_module(list(module.children())[0])

        def make_inputs_require_grads(module, input, output):
            output.requires_grad_(True)

        self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)
        self._vision_require_grads_hook = get_lowest_module(self.vision_model).register_forward_hook(
            make_inputs_require_grads
        )

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2Model.disable_input_require_grads
    def disable_input_require_grads(self):
        self._text_require_grads_hook.remove()
        self._vision_require_grads_hook.remove()

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2Model.get_input_embeddings
    def get_input_embeddings(self):
        return self.text_model.get_input_embeddings()

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2Model.set_input_embeddings
    def set_input_embeddings(self, value):
        self.text_model.set_input_embeddings(value)

    def inputs_merger(
        self,
        input_ids: torch.LongTensor,
        inputs_embeds: Optional[torch.Tensor],
        image_hidden_states: Optional[torch.Tensor],
    ):
        """
        This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM.
        The merging happens as follows:
        - The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`.
        - We get the image hidden states for the image through the vision encoder and that hidden state, after a pixel shuffle operation, is then projected into the text embedding space.
        We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer.
        - The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM.
        - To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states.
        """
        num_images, _, vision_hidden_size = image_hidden_states.shape
        special_image_token_mask = input_ids == self.image_token_id
        #  Fixes RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.
        new_inputs_embeds = inputs_embeds.clone()
        reshaped_image_hidden_states = image_hidden_states.view(-1, vision_hidden_size)
        # cast to the dtype of the input_embeds to support quantized models
        reshaped_image_hidden_states = reshaped_image_hidden_states.to(inputs_embeds.device, inputs_embeds.dtype)
        new_inputs_embeds[special_image_token_mask] = reshaped_image_hidden_states
        return new_inputs_embeds

    @add_start_docstrings_to_model_forward(
        """
        Inputs fed to the model can have an arbitrary number of images. To account for this, pixel_values fed to
        the model have image padding -> (batch_size, max_num_images, 3, max_heights, max_widths) where
        max_num_images is the maximum number of images among the batch_size samples in the batch.
        Padding images are not needed beyond padding the pixel_values at the entrance of the model.
        For efficiency, we only pass through the vision_model's forward the real images by
        discarding the padding images i.e. pixel_values of size (image_batch_size, 3, height, width) where
        image_batch_size would be 7 when num_images_per_sample=[1, 3, 1, 2] and max_num_images would be 3.
        """,
        IDEFICS3_INPUTS_DOCSTRING,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        pixel_attention_mask: Optional[torch.BoolTensor] = None,
        image_hidden_states: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Idefics3BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.training and self.text_model.gradient_checkpointing and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
            )
            use_cache = False

        # retrieve input_ids and inputs_embeds
        if input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        past_seen_tokens = 0
        if use_cache:
            if past_key_values is None:
                past_key_values = DynamicCache()
            past_seen_tokens = past_key_values.get_seq_length()

        if inputs_embeds is not None and input_ids is None and past_seen_tokens == 0:
            raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.")

        if inputs_embeds is None:
            inputs_embeds = self.text_model.get_input_embeddings()(input_ids).to(self.device)

        # START VISUAL INPUTS INTEGRATION
        if pixel_values is not None and image_hidden_states is not None:
            raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
        elif pixel_values is not None:
            batch_size, num_images, num_channels, height, width = pixel_values.shape
            pixel_values = pixel_values.to(dtype=self.dtype)  # fp16 compatibility
            pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])

            # Remove padding images - padding images are full 0.
            nb_values_per_image = pixel_values.shape[1:].numel()
            real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
            pixel_values = pixel_values[real_images_inds].contiguous()

            # Handle the vision attention mask
            if pixel_attention_mask is None:
                pixel_attention_mask = torch.ones(
                    size=(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)),
                    dtype=torch.bool,
                    device=pixel_values.device,
                )
            else:
                # Remove padding images from the mask
                pixel_attention_mask = pixel_attention_mask.view(
                    batch_size * num_images, *pixel_attention_mask.shape[2:]
                )
                pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()

            patch_size = self.config.vision_config.patch_size
            patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
            patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
            patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()

            # Get sequence from the vision encoder
            image_hidden_states = self.vision_model(
                pixel_values=pixel_values,
                patch_attention_mask=patch_attention_mask,
            ).last_hidden_state

            # Modality projection & resampling
            image_hidden_states = self.connector(image_hidden_states)

        elif image_hidden_states is not None:
            image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)

        if past_seen_tokens == 0 and inputs_embeds is not None and image_hidden_states is not None:
            # When we generate, we don't want to replace the potential image_token_id that we generated by images
            # that simply don't exist
            inputs_embeds = self.inputs_merger(
                input_ids=input_ids,
                inputs_embeds=inputs_embeds,
                image_hidden_states=image_hidden_states,
            )

        outputs = self.text_model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            cache_position=cache_position,
            return_dict=return_dict,
        )

        if not return_dict:
            return tuple(v for v in [*outputs, image_hidden_states] if v is not None)

        return Idefics3BaseModelOutputWithPast(
            last_hidden_state=outputs.last_hidden_state,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=image_hidden_states,
        )


@add_start_docstrings(
    """The Idefics3 Model with a language modeling head. It is made up a SigLIP vision encoder, with a language modeling head on top. """,
    IDEFICS3_START_DOCSTRING,
)
class Idefics3ForConditionalGeneration(Idefics3PreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.__init__ with Idefics2->Idefics3
    def __init__(self, config):
        super().__init__(config)
        self.model = Idefics3Model(config)
        self.image_token_id = self.config.image_token_id

        self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
        self.vocab_size = config.text_config.vocab_size

        # Initialize weights and apply final processing
        self.post_init()

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.enable_input_require_grads
    def enable_input_require_grads(self):
        """
        Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
        the model weights fixed.
        """

        def make_inputs_require_grads(module, input, output):
            output.requires_grad_(True)

        self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)
        self._vision_require_grads_hook = self.model.vision_model.get_input_embeddings().register_forward_hook(
            make_inputs_require_grads
        )

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.disable_input_require_grads
    def disable_input_require_grads(self):
        self._text_require_grads_hook.remove()
        self._vision_require_grads_hook.remove()

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.get_input_embeddings
    def get_input_embeddings(self):
        return self.model.text_model.get_input_embeddings()

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.set_input_embeddings
    def set_input_embeddings(self, value):
        self.model.text_model.set_input_embeddings(value)

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.get_output_embeddings
    def get_output_embeddings(self):
        return self.lm_head

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.set_output_embeddings
    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    @add_start_docstrings_to_model_forward(IDEFICS3_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Idefics3CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        pixel_attention_mask: Optional[torch.BoolTensor] = None,
        image_hidden_states: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        return_dict: Optional[bool] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
    ) -> Union[Tuple, Idefics3CausalLMOutputWithPast]:
        r"""
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or `model.image_token_id` (where `model` is your instance of `Idefics3ForConditionalGeneration`).
                Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only
                computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            logits_to_keep (`int` or `torch.Tensor`, *optional*):
                If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
                If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
                This is useful when using packed tensor format (single dimension for batch and sequence length).
        Returns:

        Example:

        ```python
        >>> import requests
        >>> import torch
        >>> from PIL import Image
        >>> from io import BytesIO

        >>> from transformers import AutoProcessor, AutoModelForVision2Seq
        >>> from transformers.image_utils import load_image

        >>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
        >>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
        >>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
        >>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")

        >>> processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3")
        >>> model = AutoModelForVision2Seq.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3", torch_dtype=torch.bfloat16, device_map="auto")

        >>> # Create inputs
        >>> messages = [
        ...     {
        ...         "role": "user",
        ...         "content": [
        ...             {"type": "image"},
        ...             {"type": "text", "text": "In this image, we can see the city of New York, and more specifically the Statue of Liberty."},
        ...             {"type": "image"},
        ...             {"type": "text", "text": "What can we see in this image?"},
        ...         ]
        ...     },
        ...     {
        ...         "role": "user",
        ...         "content": [
        ...             {"type": "image"},
        ...             {"type": "text", "text": "In which city is that bridge located?"},
        ...         ]
        ...     }
        ... ]

        >>> prompts = [processor.apply_chat_template([message], add_generation_prompt=True) for message in messages]
        >>> images = [[image1, image2], [image3]]
        >>> inputs = processor(text=prompts, images=images, padding=True, return_tensors="pt").to(model.device)

        >>> # Generate
        >>> generated_ids = model.generate(**inputs, max_new_tokens=256)
        >>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)

        >>> print(generated_texts[0])
        Assistant: There are buildings, trees, lights, and water visible in this image.

        >>> print(generated_texts[1])
        Assistant: The bridge is in San Francisco.
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            pixel_values=pixel_values,
            pixel_attention_mask=pixel_attention_mask,
            image_hidden_states=image_hidden_states,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            cache_position=cache_position,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            # Upcast to float if we need to compute the loss to avoid potential precision issues
            logits = logits.float()
            labels = labels.to(logits.device)
            # Shift so that tokens < n predict n
            if attention_mask is not None:
                # we use the input attention mask to shift the logits and labels, because it is 2D.
                # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
                shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
                shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous()
                shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous()
            else:
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return Idefics3CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=outputs.image_hidden_states,
        )

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.prepare_inputs_for_generation
    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        pixel_values=None,
        pixel_attention_mask=None,
        image_hidden_states=None,
        logits_to_keep=None,
        **kwargs,
    ):
        # Overwritten -- there are mutually exclusive inputs (if the logic to make `image_hidden_states` take
        # precedence is moved to the model, we can remove this fn)

        model_inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            cache_position=cache_position,
            pixel_values=pixel_values,
            pixel_attention_mask=pixel_attention_mask,
            image_hidden_states=image_hidden_states,
            logits_to_keep=logits_to_keep,
            **kwargs,
        )

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        # but IDEFICS requires both ids and embeds to be present
        if inputs_embeds is not None and cache_position[0] == 0:
            model_inputs["input_ids"] = input_ids

        if image_hidden_states is not None:
            model_inputs["pixel_values"] = None
            model_inputs["pixel_attention_mask"] = None

        return model_inputs

    # Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration._update_model_kwargs_for_generation
    def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
        model_kwargs = super()._update_model_kwargs_for_generation(
            outputs=outputs,
            model_kwargs=model_kwargs,
            is_encoder_decoder=is_encoder_decoder,
            **kwargs,
        )
        # Get the precomputed image_hidden_states
        model_kwargs["image_hidden_states"] = outputs.image_hidden_states
        return model_kwargs


__all__ = ["Idefics3ForConditionalGeneration", "Idefics3PreTrainedModel", "Idefics3Model", "Idefics3VisionTransformer"]
