#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from src/transformers/models/got_ocr2/modular_got_ocr2.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_got_ocr2.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import collections
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers.modeling_outputs import CausalLMOutputWithPast

from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_outputs import ModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    can_return_tuple,
    replace_return_docstrings,
)
from ..auto import AutoModelForCausalLM
from .configuration_got_ocr2 import GotOcr2Config, GotOcr2VisionConfig


_CONFIG_FOR_DOC = "GotOcr2Config"


class GotOcr2MLPBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim)
        self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size)
        self.act = ACT2FN[config.hidden_act]

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.lin1(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.lin2(hidden_states)
        return hidden_states


class GotOcr2VisionAttention(nn.Module):
    """Multi-head Attention block with relative position embeddings."""

    def __init__(self, config, window_size):
        super().__init__()
        input_size = (
            (config.image_size // config.patch_size, config.image_size // config.patch_size)
            if window_size == 0
            else (window_size, window_size)
        )

        self.num_attention_heads = config.num_attention_heads
        head_dim = config.hidden_size // config.num_attention_heads
        self.scale = head_dim**-0.5
        self.dropout = config.attention_dropout

        self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias)
        self.proj = nn.Linear(config.hidden_size, config.hidden_size)

        self.use_rel_pos = config.use_rel_pos
        if self.use_rel_pos:
            if input_size is None:
                raise ValueError("Input size must be provided if using relative positional encoding.")

            # initialize relative positional embeddings
            self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
            self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))

    def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
        """
        Get relative positional embeddings according to the relative positions of
            query and key sizes.

        Args:
            q_size (int):
                size of the query.
            k_size (int):
                size of key k.
            rel_pos (`torch.Tensor`):
                relative position embeddings (L, channel).

        Returns:
            Extracted positional embeddings according to relative positions.
        """
        max_rel_dist = int(2 * max(q_size, k_size) - 1)
        # Interpolate rel pos.
        rel_pos_resized = F.interpolate(
            rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
            size=max_rel_dist,
            mode="linear",
        )
        rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)

        # Scale the coords with short length if shapes for q and k are different.
        q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
        k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
        relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)

        return rel_pos_resized[relative_coords.long()]

    def get_decomposed_rel_pos(
        self,
        query: torch.Tensor,
        rel_pos_h: torch.Tensor,
        rel_pos_w: torch.Tensor,
        q_size: Tuple[int, int],
        k_size: Tuple[int, int],
    ) -> torch.Tensor:
        """
        Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
        https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py

        Args:
            query (`torch.Tensor`):
                query q in the attention layer with shape (batch_size, query_height * query_width, channel).
            rel_pos_h (`torch.Tensor`):
                relative position embeddings (Lh, channel) for height axis.
            rel_pos_w (`torch.Tensor`):
                relative position embeddings (Lw, channel) for width axis.
            q_size (tuple):
                spatial sequence size of query q with (query_height, query_width).
            k_size (tuple):
                spatial sequence size of key k with (key_height, key_width).

        Returns:
            decomposed_rel_pos (`torch.Tensor`):
                decomposed relative position embeddings.
        """
        query_height, query_width = q_size
        key_height, key_width = k_size
        relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
        relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)

        batch_size, _, dim = query.shape
        reshaped_query = query.reshape(batch_size, query_height, query_width, dim)
        rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
        rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)

        decomposed_rel_pos = rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]

        return decomposed_rel_pos

    def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
        batch_size, height, width, _ = hidden_states.shape
        # qkv with shape (3, batch_size, nHead, height * width, channel)
        qkv = (
            self.qkv(hidden_states)
            .reshape(batch_size, height * width, 3, self.num_attention_heads, -1)
            .permute(2, 0, 3, 1, 4)
        )
        # q, k, v with shape (batch_size * nHead, height * width, channel)
        query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(0)

        attn_weights = (query * self.scale) @ key.transpose(-2, -1)

        if self.use_rel_pos:
            decomposed_rel_pos = self.get_decomposed_rel_pos(
                query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
            )
            decomposed_rel_pos = decomposed_rel_pos.reshape_as(attn_weights)
            attn_weights = attn_weights + decomposed_rel_pos

        attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
        attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)

        attn_output = self.proj(attn_output)

        if output_attentions:
            outputs = (attn_output, attn_weights)
        else:
            outputs = (attn_output, None)

        return outputs


class GotOcr2VisionLayer(nn.Module):
    def __init__(self, config, window_size):
        super().__init__()
        self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.attn = GotOcr2VisionAttention(config, window_size)
        self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.mlp = GotOcr2MLPBlock(config)
        self.window_size = window_size

    def window_partition(self, hidden_states: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
        """
        Args:
        Partition into non-overlapping windows with padding if needed.
            hidden_states (tensor): input tokens with [batch_size, height, width, channel]. window_size (int): window
            size.

        Returns:
            windows: windows after partition with [batch_size * num_windows, window_size, window_size, channel].
            (pad_height, pad_width): padded height and width before partition
        """
        batch_size, height, width, channel = hidden_states.shape

        pad_h = (window_size - height % window_size) % window_size
        pad_w = (window_size - width % window_size) % window_size
        hidden_states = F.pad(hidden_states, (0, 0, 0, pad_w, 0, pad_h))
        pad_height, pad_width = height + pad_h, width + pad_w

        hidden_states = hidden_states.reshape(
            batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel
        )
        windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(-1, window_size, window_size, channel)
        return windows, (pad_height, pad_width)

    def window_unpartition(
        self, windows: torch.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int]
    ) -> torch.Tensor:
        """
        Args:
        Window unpartition into original sequences and removing padding.
            hidden_states (tensor):
                input tokens with [batch_size * num_windows, window_size, window_size, channel].
            window_size (int):
                window size.
            padding_shape (Tuple):
                padded height and width (pad_height, pad_width).
            original_shape (Tuple): original height and width (height, width) before padding.

        Returns:
            hidden_states: unpartitioned sequences with [batch_size, height, width, channel].
        """
        pad_height, pad_width = padding_shape
        height, width = original_shape
        batch_size = windows.shape[0] // (pad_height * pad_width // window_size // window_size)
        hidden_states = windows.reshape(
            batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1
        )
        hidden_states = (
            hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(batch_size, pad_height, pad_width, -1)
        )

        hidden_states = hidden_states[:, :height, :width, :].contiguous()
        return hidden_states

    def forward(
        self,
        hidden_states: torch.Tensor,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor]:
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        # Window partition
        if self.window_size > 0:
            height, width = hidden_states.shape[1], hidden_states.shape[2]
            hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)

        hidden_states, attn_weights = self.attn(
            hidden_states=hidden_states,
            output_attentions=output_attentions,
        )
        # Reverse window partition
        if self.window_size > 0:
            hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width))

        hidden_states = residual + hidden_states
        layernorm_output = self.layer_norm2(hidden_states)
        hidden_states = hidden_states + self.mlp(layernorm_output)

        outputs = (hidden_states,)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs


@dataclass
class GotOcr2VisionEncoderOutput(ModelOutput):
    """
    Base class for got_ocr2 vision model's outputs that also contains image embeddings obtained by applying the projection
    layer to the pooler_output.

    Args:
        image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
            The image embeddings obtained by applying the projection layer to the pooler_output.
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    image_embeds: Optional[torch.FloatTensor] = None
    last_hidden_state: Optional[torch.FloatTensor] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


class GotOcr2PatchEmbeddings(nn.Module):
    """
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    """

    def __init__(self, config):
        super().__init__()
        image_size, patch_size = config.image_size, config.patch_size
        num_channels, hidden_size = config.num_channels, config.hidden_size
        image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
        patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.num_patches = num_patches

        self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)

    def forward(self, pixel_values):
        batch_size, num_channels, height, width = pixel_values.shape
        if num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
            )
        if height != self.image_size[0] or width != self.image_size[1]:
            raise ValueError(
                f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
            )
        embeddings = self.projection(pixel_values).permute(0, 2, 3, 1)
        return embeddings


class GotOcr2LayerNorm(nn.Module):
    r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
    width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError(f"Unsupported data format: {self.data_format}")
        self.normalized_shape = (normalized_shape,)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.data_format == "channels_last":
            x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            input_dtype = x.dtype
            x = x.float()
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = x.to(dtype=input_dtype)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


class GotOcr2VisionNeck(nn.Module):
    def __init__(self, config: GotOcr2VisionConfig):
        super().__init__()
        self.config = config

        self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False)
        self.layer_norm1 = GotOcr2LayerNorm(config.output_channels, data_format="channels_first")
        self.conv2 = nn.Conv2d(config.output_channels, config.output_channels, kernel_size=3, padding=1, bias=False)
        self.layer_norm2 = GotOcr2LayerNorm(config.output_channels, data_format="channels_first")

    def forward(self, hidden_states):
        hidden_states = hidden_states.permute(0, 3, 1, 2)
        hidden_states = self.conv1(hidden_states)
        hidden_states = self.layer_norm1(hidden_states)

        hidden_states = self.conv2(hidden_states)
        hidden_states = self.layer_norm2(hidden_states)
        return hidden_states


class GotOcr2VisionEncoder(nn.Module):
    def __init__(self, config: GotOcr2VisionConfig):
        super().__init__()
        self.config = config
        self.image_size = config.image_size

        self.patch_embed = GotOcr2PatchEmbeddings(config)

        self.pos_embed = None
        if config.use_abs_pos:
            # Initialize absolute positional embedding with pretrain image size.
            self.pos_embed = nn.Parameter(
                torch.zeros(
                    1,
                    config.image_size // config.patch_size,
                    config.image_size // config.patch_size,
                    config.hidden_size,
                )
            )

        self.layers = nn.ModuleList()
        for i in range(config.num_hidden_layers):
            layer = GotOcr2VisionLayer(
                config,
                window_size=config.window_size if i not in config.global_attn_indexes else 0,
            )
            self.layers.append(layer)

        self.neck = GotOcr2VisionNeck(config)

        self.gradient_checkpointing = False

    def get_input_embeddings(self):
        return self.patch_embed

    @can_return_tuple
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
    ) -> GotOcr2VisionEncoderOutput:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        hidden_states = self.patch_embed(pixel_values)
        if self.pos_embed is not None:
            hidden_states = hidden_states + self.pos_embed

        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                )
            else:
                layer_outputs = layer_module(hidden_states, output_attentions=output_attentions)

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        hidden_states = self.neck(hidden_states)

        return GotOcr2VisionEncoderOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class GotOcr2MultiModalProjector(nn.Module):
    def __init__(self, config: GotOcr2Config):
        super().__init__()
        vision_output_channels = config.vision_config.output_channels
        language_hidden_size = config.text_config.hidden_size
        self.conv_upsampler1 = nn.Conv2d(
            vision_output_channels, vision_output_channels * 2, kernel_size=3, stride=2, padding=1, bias=False
        )
        self.conv_upsampler2 = nn.Conv2d(
            vision_output_channels * 2, language_hidden_size, kernel_size=3, stride=2, padding=1, bias=False
        )
        self.multimodal_projector = nn.Linear(language_hidden_size, language_hidden_size)

    def forward(self, vision_embeddings: torch.Tensor) -> torch.Tensor:
        hidden_state = self.conv_upsampler1(vision_embeddings)
        hidden_state = self.conv_upsampler2(hidden_state)
        hidden_state = hidden_state.flatten(2).permute(0, 2, 1)
        hidden_state = self.multimodal_projector(hidden_state)
        return hidden_state


@dataclass
class GotOcr2CausalLMOutputWithPast(ModelOutput):
    """
    Base class for GotOcr2 causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        image_hidden_states (`torch.FloatTensor`, *optional*):
            A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`.
            image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[torch.FloatTensor] = None


GOT_OCR2_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`GotOcr2Config`] or [`GotOcr2VisionConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
    GOT_OCR2_START_DOCSTRING,
)
class GotOcr2PreTrainedModel(PreTrainedModel):
    config_class = GotOcr2Config
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["GotOcr2VisionAttention"]
    _skip_keys_device_placement = "past_key_values"
    _supports_cache_class = True
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_quantized_cache = True
    _supports_static_cache = True

    def _init_weights(self, module):
        # important: this ported version of GotOcr2 isn't meant for training from scratch - only
        # inference and fine-tuning - so the proper init weights code has been removed - the original codebase
        # https://github.com/haotian-liu/GotOcr2/tree/main/got_ocr2 should serve for that purpose
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.text_config.initializer_range
        )

        if hasattr(module, "class_embedding"):
            module.class_embedding.data.normal_(mean=0.0, std=std)

        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


GOT_OCR2_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        pixel_values (`torch.FloatTensor` of shape `(seq_length, num_channels * image_size * image_size)):
            The tensors corresponding to the input images. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`GotOcr2ImageProcessor.__call__`] for details. [`GotOcr2Processor`] uses
            [`GotOcr2ImageProcessor`] for processing images.
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""


@add_start_docstrings(
    """The GOT_OCR2 model which consists of a vision backbone and a language model.""",
    GOT_OCR2_START_DOCSTRING,
)
class GotOcr2ForConditionalGeneration(GotOcr2PreTrainedModel, GenerationMixin):
    def __init__(self, config: GotOcr2Config):
        super().__init__(config)
        self.vision_tower = GotOcr2VisionEncoder(config.vision_config)

        self.multi_modal_projector = GotOcr2MultiModalProjector(config)
        self.vocab_size = config.text_config.vocab_size
        self.language_model = AutoModelForCausalLM.from_config(config.text_config)

        if self.language_model._tied_weights_keys is not None:
            self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]

        self.pad_token_id = config.pad_token_id

        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    def get_decoder(self):
        return self.language_model.get_decoder()

    def get_image_features(
        self,
        pixel_values: torch.FloatTensor,
    ):
        """
        Obtains image last hidden states from the vision tower and apply multimodal projection.

        Args:
            pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
        Returns:
            image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
        """
        image_outputs = self.vision_tower(pixel_values).last_hidden_state
        return self.multi_modal_projector(image_outputs)

    @can_return_tuple
    @add_start_docstrings_to_model_forward(GOT_OCR2_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=GotOcr2CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
    ) -> GotOcr2CausalLMOutputWithPast:
        r"""
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            logits_to_keep (`int` or `torch.Tensor`, *optional*):
                If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
                If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
                This is useful when using packed tensor format (single dimension for batch and sequence length).


        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, GotOcr2ForConditionalGeneration, TextStreamer

        >>> model = GotOcr2ForConditionalGeneration.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf").to("cuda")
        >>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")

        >>> url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(image, return_tensors="pt", color="green").to("cuda")

        >>> # Generate
        >>> streamer = TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
        >>> generate_ids = model.generate(
        ...     **inputs,
        ...     do_sample=False,
        ...     tokenizer = processor.tokenizer,
        ...     stop_strings='<|im_end|>',
        ...     streamer=streamer,
        ...     max_new_tokens=4096,
        ... )
        "You should keep in mind what features from the module should be used, especially
        when you're planning to sell a template."
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if pixel_values is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
            )

        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(input_ids)

        if pixel_values is not None:
            image_features = self.get_image_features(pixel_values=pixel_values.to(inputs_embeds.dtype))
            n_image_tokens = (input_ids == self.config.image_token_index).sum()
            n_image_features = image_features.shape[0] * image_features.shape[1]
            if n_image_tokens != n_image_features:
                raise ValueError(
                    f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
                )
            special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
            special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
            image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
            inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)

        outputs: CausalLMOutputWithPast = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
        )

        logits = outputs.logits

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            if attention_mask is not None:
                # we use the input attention mask to shift the logits and labels, because it is 2D.
                # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
                shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
                shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
                shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
            else:
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
            )

        return GotOcr2CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=image_features if pixel_values is not None else None,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        inputs_embeds=None,
        pixel_values=None,
        attention_mask=None,
        cache_position=None,
        logits_to_keep=None,
        **kwargs,
    ):
        # Overwritten -- in specific circumstances we don't want to forward image inputs to the model

        model_inputs = self.language_model.prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
            **kwargs,
        )

        if cache_position[0] == 0:
            # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
            # Otherwise we need pixel values to be passed to model
            model_inputs["pixel_values"] = pixel_values

        return model_inputs


__all__ = ["GotOcr2PreTrainedModel", "GotOcr2ForConditionalGeneration"]
