# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DINOv2 model."""

import collections.abc
from typing import Callable, Dict, List, Optional, Set, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...modeling_outputs import (
    BackboneOutput,
    BaseModelOutput,
    BaseModelOutputWithPooling,
    ImageClassifierOutput,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
    torch_int,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_dinov2 import Dinov2Config


logger = logging.get_logger(__name__)

# General docstring
_CONFIG_FOR_DOC = "Dinov2Config"

# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/dinov2-base"
_EXPECTED_OUTPUT_SHAPE = [1, 257, 768]

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-small-imagenet1k-1-layer"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"


class Dinov2Embeddings(nn.Module):
    """
    Construct the CLS token, mask token, position and patch embeddings.
    """

    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()

        self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
        if config.use_mask_token:
            self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
        self.patch_embeddings = Dinov2PatchEmbeddings(config)
        num_patches = self.patch_embeddings.num_patches
        self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.patch_size = config.patch_size
        self.use_mask_token = config.use_mask_token
        self.config = config

    def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
        """
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
        images. This method is also adapted to support torch.jit tracing and interpolation at torch.float32 precision.

        Adapted from:
        - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
        - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
        """

        num_patches = embeddings.shape[1] - 1
        num_positions = self.position_embeddings.shape[1] - 1

        # always interpolate when tracing to ensure the exported model works for dynamic input shapes
        if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
            return self.position_embeddings

        class_pos_embed = self.position_embeddings[:, :1]
        patch_pos_embed = self.position_embeddings[:, 1:]

        dim = embeddings.shape[-1]

        new_height = height // self.patch_size
        new_width = width // self.patch_size

        sqrt_num_positions = torch_int(num_positions**0.5)
        patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
        target_dtype = patch_pos_embed.dtype
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed.to(torch.float32),
            size=(new_height, new_width),
            mode="bicubic",
            align_corners=False,
        ).to(dtype=target_dtype)

        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)

        return torch.cat((class_pos_embed, patch_pos_embed), dim=1)

    def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None) -> torch.Tensor:
        batch_size, _, height, width = pixel_values.shape
        target_dtype = self.patch_embeddings.projection.weight.dtype
        embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype))

        if bool_masked_pos is not None and self.use_mask_token:
            embeddings = torch.where(
                bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings
            )

        # add the [CLS] token to the embedded patch tokens
        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        embeddings = torch.cat((cls_tokens, embeddings), dim=1)

        # add positional encoding to each token
        embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)

        embeddings = self.dropout(embeddings)

        return embeddings


class Dinov2PatchEmbeddings(nn.Module):
    """
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    """

    def __init__(self, config):
        super().__init__()
        image_size, patch_size = config.image_size, config.patch_size
        num_channels, hidden_size = config.num_channels, config.hidden_size

        image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
        patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.num_patches = num_patches

        self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        num_channels = pixel_values.shape[1]
        if num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
                f" Expected {self.num_channels} but got {num_channels}."
            )
        embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
        return embeddings


# Copied from transformers.models.vit.modeling_vit.eager_attention_forward
def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    # Take the dot product between "query" and "key" to get the raw attention scores.
    attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling

    # Normalize the attention scores to probabilities.
    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)

    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)

    # Mask heads if we want to
    if attention_mask is not None:
        attn_weights = attn_weights * attention_mask

    attn_output = torch.matmul(attn_weights, value)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2
class Dinov2SelfAttention(nn.Module):
    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
                f"heads {config.num_attention_heads}."
            )

        self.config = config
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.dropout_prob = config.attention_probs_dropout_prob
        self.scaling = self.attention_head_size**-0.5
        self.is_causal = False

        self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
        self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
        self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        query_layer = self.transpose_for_scores(self.query(hidden_states))

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and output_attentions:
                logger.warning_once(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )
            else:
                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        context_layer, attention_probs = attention_interface(
            self,
            query_layer,
            key_layer,
            value_layer,
            head_mask,
            is_causal=self.is_causal,
            scaling=self.scaling,
            dropout=0.0 if not self.training else self.dropout_prob,
        )

        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.reshape(new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs


# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2
class Dinov2SelfOutput(nn.Module):
    """
    The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    """

    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return hidden_states


# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2
class Dinov2Attention(nn.Module):
    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()
        self.attention = Dinov2SelfAttention(config)
        self.output = Dinov2SelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads: Set[int]) -> None:
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.attention.query = prune_linear_layer(self.attention.query, index)
        self.attention.key = prune_linear_layer(self.attention.key, index)
        self.attention.value = prune_linear_layer(self.attention.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
        self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        self_outputs = self.attention(hidden_states, head_mask, output_attentions)

        attention_output = self.output(self_outputs[0], hidden_states)

        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class Dinov2LayerScale(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.lambda1 = nn.Parameter(config.layerscale_value * torch.ones(config.hidden_size))

    def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
        return hidden_state * self.lambda1


# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    """
    if drop_prob == 0.0 or not training:
        return input
    keep_prob = 1 - drop_prob
    shape = (input.shape[0],) + (1,) * (input.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
    random_tensor.floor_()  # binarize
    output = input.div(keep_prob) * random_tensor
    return output


# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class Dinov2DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: Optional[float] = None) -> None:
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return drop_path(hidden_states, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


class Dinov2MLP(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        in_features = out_features = config.hidden_size
        hidden_features = int(config.hidden_size * config.mlp_ratio)
        self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
        if isinstance(config.hidden_act, str):
            self.activation = ACT2FN[config.hidden_act]
        else:
            self.activation = config.hidden_act
        self.fc2 = nn.Linear(hidden_features, out_features, bias=True)

    def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
        hidden_state = self.fc1(hidden_state)
        hidden_state = self.activation(hidden_state)
        hidden_state = self.fc2(hidden_state)
        return hidden_state


class Dinov2SwiGLUFFN(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        in_features = out_features = config.hidden_size
        hidden_features = int(config.hidden_size * config.mlp_ratio)
        hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8

        self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True)
        self.weights_out = nn.Linear(hidden_features, out_features, bias=True)

    def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
        hidden_state = self.weights_in(hidden_state)
        x1, x2 = hidden_state.chunk(2, dim=-1)
        hidden = nn.functional.silu(x1) * x2
        return self.weights_out(hidden)


class Dinov2Layer(nn.Module):
    """This corresponds to the Block class in the original implementation."""

    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()

        self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.attention = Dinov2Attention(config)
        self.layer_scale1 = Dinov2LayerScale(config)
        self.drop_path = Dinov2DropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()

        self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        if config.use_swiglu_ffn:
            self.mlp = Dinov2SwiGLUFFN(config)
        else:
            self.mlp = Dinov2MLP(config)
        self.layer_scale2 = Dinov2LayerScale(config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        self_attention_outputs = self.attention(
            self.norm1(hidden_states),  # in Dinov2, layernorm is applied before self-attention
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]

        attention_output = self.layer_scale1(attention_output)
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        # first residual connection
        hidden_states = self.drop_path(attention_output) + hidden_states

        # in Dinov2, layernorm is also applied after self-attention
        layer_output = self.norm2(hidden_states)
        layer_output = self.mlp(layer_output)
        layer_output = self.layer_scale2(layer_output)

        # second residual connection
        layer_output = self.drop_path(layer_output) + hidden_states

        outputs = (layer_output,) + outputs

        return outputs


# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2
class Dinov2Encoder(nn.Module):
    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([Dinov2Layer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ) -> Union[tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    layer_head_mask,
                    output_attentions,
                )
            else:
                layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class Dinov2PreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = Dinov2Config
    base_model_prefix = "dinov2"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True
    _no_split_modules = ["Dinov2SwiGLUFFN"]
    _supports_sdpa = True
    _supports_flash_attn_2 = True

    def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
            # `trunc_normal_cpu` not implemented in `half` issues
            module.weight.data = nn.init.trunc_normal_(
                module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
            ).to(module.weight.dtype)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, Dinov2Embeddings):
            module.position_embeddings.data = nn.init.trunc_normal_(
                module.position_embeddings.data.to(torch.float32),
                mean=0.0,
                std=self.config.initializer_range,
            ).to(module.position_embeddings.dtype)

            module.cls_token.data = nn.init.trunc_normal_(
                module.cls_token.data.to(torch.float32),
                mean=0.0,
                std=self.config.initializer_range,
            ).to(module.cls_token.dtype)

            if self.config.use_mask_token:
                module.mask_token.data.zero_()
        elif isinstance(module, Dinov2LayerScale):
            module.lambda1.data.fill_(self.config.layerscale_value)


DINOV2_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`Dinov2Config`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

DINOV2_BASE_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
            [`BitImageProcessor.preprocess`] for details.

        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for
            pre-training.

        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

DINOV2_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
            [`BitImageProcessor.preprocess`] for details.

        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare DINOv2 Model transformer outputting raw hidden-states without any specific head on top.",
    DINOV2_START_DOCSTRING,
)
class Dinov2Model(Dinov2PreTrainedModel):
    def __init__(self, config: Dinov2Config):
        super().__init__(config)
        self.config = config

        self.embeddings = Dinov2Embeddings(config)
        self.encoder = Dinov2Encoder(config)

        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
        return self.embeddings.patch_embeddings

    def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPooling,
        config_class=_CONFIG_FOR_DOC,
        modality="vision",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        bool_masked_pos: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)

        encoder_outputs = self.encoder(
            embedding_output,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        sequence_output = self.layernorm(sequence_output)
        pooled_output = sequence_output[:, 0, :]

        if not return_dict:
            head_outputs = (sequence_output, pooled_output)
            return head_outputs + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


@add_start_docstrings(
    """
    Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
    of the [CLS] token) e.g. for ImageNet.
    """,
    DINOV2_START_DOCSTRING,
)
class Dinov2ForImageClassification(Dinov2PreTrainedModel):
    def __init__(self, config: Dinov2Config) -> None:
        super().__init__(config)

        self.num_labels = config.num_labels
        self.dinov2 = Dinov2Model(config)

        # Classifier head
        self.classifier = (
            nn.Linear(config.hidden_size * 2, config.num_labels) if config.num_labels > 0 else nn.Identity()
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_IMAGE_CLASS_CHECKPOINT,
        output_type=ImageClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
    )
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, ImageClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.dinov2(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]  # batch_size, sequence_length, hidden_size

        cls_token = sequence_output[:, 0]
        patch_tokens = sequence_output[:, 1:]

        linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1)

        logits = self.classifier(linear_input)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return ImageClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    Dinov2 backbone, to be used with frameworks like DETR and MaskFormer.
    """,
    DINOV2_START_DOCSTRING,
)
class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin):
    def __init__(self, config):
        super().__init__(config)
        super()._init_backbone(config)

        self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
        self.embeddings = Dinov2Embeddings(config)
        self.encoder = Dinov2Encoder(config)

        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
        return self.embeddings.patch_embeddings

    @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: torch.Tensor,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> BackboneOutput:
        """
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, AutoBackbone
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
        >>> model = AutoBackbone.from_pretrained(
        ...     "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"]
        ... )

        >>> inputs = processor(image, return_tensors="pt")

        >>> outputs = model(**inputs)
        >>> feature_maps = outputs.feature_maps
        >>> list(feature_maps[-1].shape)
        [1, 768, 16, 16]
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions

        embedding_output = self.embeddings(pixel_values)

        outputs = self.encoder(
            embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict
        )

        hidden_states = outputs.hidden_states if return_dict else outputs[1]

        feature_maps = ()
        for stage, hidden_state in zip(self.stage_names, hidden_states):
            if stage in self.out_features:
                if self.config.apply_layernorm:
                    hidden_state = self.layernorm(hidden_state)
                if self.config.reshape_hidden_states:
                    hidden_state = hidden_state[:, 1:]
                    # this was actually a bug in the original implementation that we copied here,
                    # cause normally the order is height, width
                    batch_size, _, height, width = pixel_values.shape
                    patch_size = self.config.patch_size
                    hidden_state = hidden_state.reshape(batch_size, height // patch_size, width // patch_size, -1)
                    hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
                feature_maps += (hidden_state,)

        if not return_dict:
            if output_hidden_states:
                output = (feature_maps,) + outputs[1:]
            else:
                output = (feature_maps,) + outputs[2:]
            return output

        return BackboneOutput(
            feature_maps=feature_maps,
            hidden_states=outputs.hidden_states if output_hidden_states else None,
            attentions=outputs.attentions if output_attentions else None,
        )


__all__ = ["Dinov2ForImageClassification", "Dinov2Model", "Dinov2PreTrainedModel", "Dinov2Backbone"]
