# coding=utf-8
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DeBERTa model."""

from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...modeling_outputs import (
    BaseModelOutput,
    MaskedLMOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_deberta import DebertaConfig


logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DebertaConfig"
_CHECKPOINT_FOR_DOC = "microsoft/deberta-base"

# Masked LM docstring
_CHECKPOINT_FOR_MASKED_LM = "lsanochkin/deberta-large-feedback"
_MASKED_LM_EXPECTED_OUTPUT = "' Paris'"
_MASKED_LM_EXPECTED_LOSS = "0.54"

# QuestionAnswering docstring
_CHECKPOINT_FOR_QA = "Palak/microsoft_deberta-large_squad"
_QA_EXPECTED_OUTPUT = "' a nice puppet'"
_QA_EXPECTED_LOSS = 0.14
_QA_TARGET_START_INDEX = 12
_QA_TARGET_END_INDEX = 14


class DebertaLayerNorm(nn.Module):
    """LayerNorm module in the TF style (epsilon inside the square root)."""

    def __init__(self, size, eps=1e-12):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(size))
        self.bias = nn.Parameter(torch.zeros(size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_type = hidden_states.dtype
        hidden_states = hidden_states.float()
        mean = hidden_states.mean(-1, keepdim=True)
        variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
        hidden_states = (hidden_states - mean) / torch.sqrt(variance + self.variance_epsilon)
        hidden_states = hidden_states.to(input_type)
        y = self.weight * hidden_states + self.bias
        return y


class DebertaSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


@torch.jit.script
def build_relative_position(query_layer, key_layer):
    """
    Build relative position according to the query and key

    We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
    \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
    P_k\\)

    Args:
        query_size (int): the length of query
        key_size (int): the length of key

    Return:
        `torch.LongTensor`: A tensor with shape [1, query_size, key_size]

    """

    query_size = query_layer.size(-2)
    key_size = key_layer.size(-2)

    q_ids = torch.arange(query_size, dtype=torch.long, device=query_layer.device)
    k_ids = torch.arange(key_size, dtype=torch.long, device=key_layer.device)
    rel_pos_ids = q_ids[:, None] - k_ids.view(1, -1).repeat(query_size, 1)
    rel_pos_ids = rel_pos_ids[:query_size, :]
    rel_pos_ids = rel_pos_ids.unsqueeze(0)
    return rel_pos_ids


@torch.jit.script
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
    return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])


@torch.jit.script
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
    return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])


@torch.jit.script
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
    return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))


###### To support a general trace, we have to define these operation as they use python objects (sizes) ##################
# which are not supported by torch.jit.trace.
# Full credits to @Szustarol
@torch.jit.script
def scaled_size_sqrt(query_layer: torch.Tensor, scale_factor: int):
    return torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)


@torch.jit.script
def build_rpos(query_layer: torch.Tensor, key_layer: torch.Tensor, relative_pos):
    if query_layer.size(-2) != key_layer.size(-2):
        return build_relative_position(query_layer, key_layer)
    else:
        return relative_pos


@torch.jit.script
def compute_attention_span(query_layer: torch.Tensor, key_layer: torch.Tensor, max_relative_positions: int):
    return torch.tensor(min(max(query_layer.size(-2), key_layer.size(-2)), max_relative_positions))


@torch.jit.script
def uneven_size_corrected(p2c_att, query_layer: torch.Tensor, key_layer: torch.Tensor, relative_pos):
    if query_layer.size(-2) != key_layer.size(-2):
        pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
        return torch.gather(p2c_att, dim=2, index=pos_dynamic_expand(pos_index, p2c_att, key_layer))
    else:
        return p2c_att


########################################################################################################################


class DisentangledSelfAttention(nn.Module):
    """
    Disentangled self-attention module

    Parameters:
        config (`str`):
            A model config class instance with the configuration to build a new model. The schema is similar to
            *BertConfig*, for more details, please refer [`DebertaConfig`]

    """

    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False)
        self.q_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
        self.v_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
        self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []

        self.relative_attention = getattr(config, "relative_attention", False)
        self.talking_head = getattr(config, "talking_head", False)

        if self.talking_head:
            self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
            self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
        else:
            self.head_logits_proj = None
            self.head_weights_proj = None

        if self.relative_attention:
            self.max_relative_positions = getattr(config, "max_relative_positions", -1)
            if self.max_relative_positions < 1:
                self.max_relative_positions = config.max_position_embeddings
            self.pos_dropout = nn.Dropout(config.hidden_dropout_prob)

            if "c2p" in self.pos_att_type:
                self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
            if "p2c" in self.pos_att_type:
                self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        output_attentions: bool = False,
        query_states: Optional[torch.Tensor] = None,
        relative_pos: Optional[torch.Tensor] = None,
        rel_embeddings: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """
        Call the module

        Args:
            hidden_states (`torch.FloatTensor`):
                Input states to the module usually the output from previous layer, it will be the Q,K and V in
                *Attention(Q,K,V)*

            attention_mask (`torch.BoolTensor`):
                An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
                sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
                th token.

            output_attentions (`bool`, *optional*):
                Whether return the attention matrix.

            query_states (`torch.FloatTensor`, *optional*):
                The *Q* state in *Attention(Q,K,V)*.

            relative_pos (`torch.LongTensor`):
                The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
                values ranging in [*-max_relative_positions*, *max_relative_positions*].

            rel_embeddings (`torch.FloatTensor`):
                The embedding of relative distances. It's a tensor of shape [\\(2 \\times
                \\text{max_relative_positions}\\), *hidden_size*].


        """
        if query_states is None:
            qp = self.in_proj(hidden_states)  # .split(self.all_head_size, dim=-1)
            query_layer, key_layer, value_layer = self.transpose_for_scores(qp).chunk(3, dim=-1)
        else:
            ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0)
            qkvw = [torch.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], dim=0) for k in range(3)]
            q = torch.matmul(qkvw[0], query_states.t().to(dtype=qkvw[0].dtype))
            k = torch.matmul(qkvw[1], hidden_states.t().to(dtype=qkvw[1].dtype))
            v = torch.matmul(qkvw[2], hidden_states.t().to(dtype=qkvw[2].dtype))
            query_layer, key_layer, value_layer = [self.transpose_for_scores(x) for x in [q, k, v]]

        query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :])
        value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :])

        rel_att: int = 0
        # Take the dot product between "query" and "key" to get the raw attention scores.
        scale_factor = 1 + len(self.pos_att_type)
        scale = scaled_size_sqrt(query_layer, scale_factor)
        query_layer = query_layer / scale.to(dtype=query_layer.dtype)
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        if self.relative_attention and rel_embeddings is not None and relative_pos is not None:
            rel_embeddings = self.pos_dropout(rel_embeddings)
            rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)

        if rel_att is not None:
            attention_scores = attention_scores + rel_att

        # bxhxlxd
        if self.head_logits_proj is not None:
            attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

        attention_mask = attention_mask.bool()
        attention_scores = attention_scores.masked_fill(~(attention_mask), torch.finfo(query_layer.dtype).min)
        # bsz x height x length x dimension
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        attention_probs = self.dropout(attention_probs)
        if self.head_weights_proj is not None:
            attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (-1,)
        context_layer = context_layer.view(new_context_layer_shape)
        if not output_attentions:
            return (context_layer, None)
        return (context_layer, attention_probs)

    def disentangled_att_bias(
        self,
        query_layer: torch.Tensor,
        key_layer: torch.Tensor,
        relative_pos: torch.Tensor,
        rel_embeddings: torch.Tensor,
        scale_factor: int,
    ):
        if relative_pos is None:
            relative_pos = build_relative_position(query_layer, key_layer, query_layer.device)
        if relative_pos.dim() == 2:
            relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
        elif relative_pos.dim() == 3:
            relative_pos = relative_pos.unsqueeze(1)
        # bxhxqxk
        elif relative_pos.dim() != 4:
            raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")

        att_span = compute_attention_span(query_layer, key_layer, self.max_relative_positions)
        relative_pos = relative_pos.long()
        rel_embeddings = rel_embeddings[
            self.max_relative_positions - att_span : self.max_relative_positions + att_span, :
        ].unsqueeze(0)

        score = 0

        # content->position
        if "c2p" in self.pos_att_type:
            pos_key_layer = self.pos_proj(rel_embeddings)
            pos_key_layer = self.transpose_for_scores(pos_key_layer)
            c2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2))
            c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
            c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos))
            score += c2p_att

        # position->content
        if "p2c" in self.pos_att_type:
            pos_query_layer = self.pos_q_proj(rel_embeddings)
            pos_query_layer = self.transpose_for_scores(pos_query_layer)
            pos_query_layer /= scaled_size_sqrt(pos_query_layer, scale_factor)
            r_pos = build_rpos(
                query_layer,
                key_layer,
                relative_pos,
            )
            p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
            p2c_att = torch.matmul(key_layer, pos_query_layer.transpose(-1, -2).to(dtype=key_layer.dtype))
            p2c_att = torch.gather(
                p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer)
            ).transpose(-1, -2)

            p2c_att = uneven_size_corrected(p2c_att, query_layer, key_layer, relative_pos)
            score += p2c_att

        return score


class DebertaEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
        super().__init__()
        pad_token_id = getattr(config, "pad_token_id", 0)
        self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
        self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)

        self.position_biased_input = getattr(config, "position_biased_input", True)
        if not self.position_biased_input:
            self.position_embeddings = None
        else:
            self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)

        if config.type_vocab_size > 0:
            self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
        else:
            self.token_type_embeddings = None

        if self.embedding_size != config.hidden_size:
            self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
        else:
            self.embed_proj = None

        self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.config = config

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer(
            "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
        )

    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        if self.position_embeddings is not None:
            position_embeddings = self.position_embeddings(position_ids.long())
        else:
            position_embeddings = torch.zeros_like(inputs_embeds)

        embeddings = inputs_embeds
        if self.position_biased_input:
            embeddings = embeddings + position_embeddings
        if self.token_type_embeddings is not None:
            token_type_embeddings = self.token_type_embeddings(token_type_ids)
            embeddings = embeddings + token_type_embeddings

        if self.embed_proj is not None:
            embeddings = self.embed_proj(embeddings)

        embeddings = self.LayerNorm(embeddings)

        if mask is not None:
            if mask.dim() != embeddings.dim():
                if mask.dim() == 4:
                    mask = mask.squeeze(1).squeeze(1)
                mask = mask.unsqueeze(2)
            mask = mask.to(embeddings.dtype)

            embeddings = embeddings * mask

        embeddings = self.dropout(embeddings)
        return embeddings


class DebertaAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = DisentangledSelfAttention(config)
        self.output = DebertaSelfOutput(config)
        self.config = config

    def forward(
        self,
        hidden_states,
        attention_mask,
        output_attentions: bool = False,
        query_states=None,
        relative_pos=None,
        rel_embeddings=None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        self_output, att_matrix = self.self(
            hidden_states,
            attention_mask,
            output_attentions,
            query_states=query_states,
            relative_pos=relative_pos,
            rel_embeddings=rel_embeddings,
        )
        if query_states is None:
            query_states = hidden_states
        attention_output = self.output(self_output, query_states)

        if output_attentions:
            return (attention_output, att_matrix)
        else:
            return (attention_output, None)


# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Deberta
class DebertaIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class DebertaOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.config = config

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class DebertaLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = DebertaAttention(config)
        self.intermediate = DebertaIntermediate(config)
        self.output = DebertaOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask,
        query_states=None,
        relative_pos=None,
        rel_embeddings=None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        attention_output, att_matrix = self.attention(
            hidden_states,
            attention_mask,
            output_attentions=output_attentions,
            query_states=query_states,
            relative_pos=relative_pos,
            rel_embeddings=rel_embeddings,
        )
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)

        if output_attentions:
            return (layer_output, att_matrix)
        else:
            return (layer_output, None)


class DebertaEncoder(nn.Module):
    """Modified BertEncoder with relative position bias support"""

    def __init__(self, config):
        super().__init__()
        self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)])
        self.relative_attention = getattr(config, "relative_attention", False)
        if self.relative_attention:
            self.max_relative_positions = getattr(config, "max_relative_positions", -1)
            if self.max_relative_positions < 1:
                self.max_relative_positions = config.max_position_embeddings
            self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size)
        self.gradient_checkpointing = False

    def get_rel_embedding(self):
        rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
        return rel_embeddings

    def get_attention_mask(self, attention_mask):
        if attention_mask.dim() <= 2:
            extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
            attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
        elif attention_mask.dim() == 3:
            attention_mask = attention_mask.unsqueeze(1)

        return attention_mask

    def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
        if self.relative_attention and relative_pos is None:
            if query_states is not None:
                relative_pos = build_relative_position(query_states, hidden_states)
            else:
                relative_pos = build_relative_position(hidden_states, hidden_states)
        return relative_pos

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        output_hidden_states: bool = True,
        output_attentions: bool = False,
        query_states=None,
        relative_pos=None,
        return_dict: bool = True,
    ):
        attention_mask = self.get_attention_mask(attention_mask)
        relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)

        all_hidden_states: Optional[Tuple[torch.Tensor]] = (hidden_states,) if output_hidden_states else None
        all_attentions = () if output_attentions else None

        next_kv = hidden_states

        rel_embeddings = self.get_rel_embedding()
        for i, layer_module in enumerate(self.layer):
            if self.gradient_checkpointing and self.training:
                hidden_states, att_m = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    next_kv,
                    attention_mask,
                    query_states,
                    relative_pos,
                    rel_embeddings,
                    output_attentions,
                )
            else:
                hidden_states, att_m = layer_module(
                    next_kv,
                    attention_mask,
                    query_states=query_states,
                    relative_pos=relative_pos,
                    rel_embeddings=rel_embeddings,
                    output_attentions=output_attentions,
                )

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if query_states is not None:
                query_states = hidden_states
            else:
                next_kv = hidden_states

            if output_attentions:
                all_attentions = all_attentions + (att_m,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )


class DebertaPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = DebertaConfig
    base_model_prefix = "deberta"
    _keys_to_ignore_on_load_unexpected = ["position_embeddings"]
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, (nn.LayerNorm, DebertaLayerNorm)):
            module.weight.data.fill_(1.0)
            module.bias.data.zero_()
        elif isinstance(module, DisentangledSelfAttention):
            module.q_bias.data.zero_()
            module.v_bias.data.zero_()
        elif isinstance(module, (LegacyDebertaLMPredictionHead, DebertaLMPredictionHead)):
            module.bias.data.zero_()


DEBERTA_START_DOCSTRING = r"""
    The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
    Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
    on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
    improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.


    Parameters:
        config ([`DebertaConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

DEBERTA_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.

            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
            model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
    DEBERTA_START_DOCSTRING,
)
class DebertaModel(DebertaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.embeddings = DebertaEmbeddings(config)
        self.encoder = DebertaEncoder(config)
        self.z_steps = 0
        self.config = config
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, new_embeddings):
        self.embeddings.word_embeddings = new_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        raise NotImplementedError("The prune function is not implemented in DeBERTa model.")

    @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        embedding_output = self.embeddings(
            input_ids=input_ids,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            mask=attention_mask,
            inputs_embeds=inputs_embeds,
        )

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask,
            output_hidden_states=True,
            output_attentions=output_attentions,
            return_dict=return_dict,
        )
        encoded_layers = encoder_outputs[1]

        if self.z_steps > 1:
            hidden_states = encoded_layers[-2]
            layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
            query_states = encoded_layers[-1]
            rel_embeddings = self.encoder.get_rel_embedding()
            attention_mask = self.encoder.get_attention_mask(attention_mask)
            rel_pos = self.encoder.get_rel_pos(embedding_output)
            for layer in layers[1:]:
                query_states = layer(
                    hidden_states,
                    attention_mask,
                    output_attentions=False,
                    query_states=query_states,
                    relative_pos=rel_pos,
                    rel_embeddings=rel_embeddings,
                )
                encoded_layers.append(query_states)

        sequence_output = encoded_layers[-1]

        if not return_dict:
            return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]

        return BaseModelOutput(
            last_hidden_state=sequence_output,
            hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
            attentions=encoder_outputs.attentions,
        )


class LegacyDebertaPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.embedding_size = getattr(config, "embedding_size", config.hidden_size)

        self.dense = nn.Linear(config.hidden_size, self.embedding_size)
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class LegacyDebertaLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transform = LegacyDebertaPredictionHeadTransform(config)

        self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False)

        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def _tie_weights(self):
        self.decoder.bias = self.bias

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->LegacyDeberta
class LegacyDebertaOnlyMLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = LegacyDebertaLMPredictionHead(config)

    def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class DebertaLMPredictionHead(nn.Module):
    """https://github.com/microsoft/DeBERTa/blob/master/DeBERTa/deberta/bert.py#L270"""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)

        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act

        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=True)

        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

    # note that the input embeddings must be passed as an argument
    def forward(self, hidden_states, word_embeddings):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(
            hidden_states
        )  # original used MaskedLayerNorm, but passed no mask. This is equivalent.
        hidden_states = torch.matmul(hidden_states, word_embeddings.weight.t()) + self.bias
        return hidden_states


class DebertaOnlyMLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.lm_head = DebertaLMPredictionHead(config)

    # note that the input embeddings must be passed as an argument
    def forward(self, sequence_output, word_embeddings):
        prediction_scores = self.lm_head(sequence_output, word_embeddings)
        return prediction_scores


@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
class DebertaForMaskedLM(DebertaPreTrainedModel):
    _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]

    def __init__(self, config):
        super().__init__(config)
        self.legacy = config.legacy
        self.deberta = DebertaModel(config)
        if self.legacy:
            self.cls = LegacyDebertaOnlyMLMHead(config)
        else:
            self._tied_weights_keys = ["lm_predictions.lm_head.weight", "deberta.embeddings.word_embeddings.weight"]
            self.lm_predictions = DebertaOnlyMLMHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        if self.legacy:
            return self.cls.predictions.decoder
        else:
            return self.lm_predictions.lm_head.dense

    def set_output_embeddings(self, new_embeddings):
        if self.legacy:
            self.cls.predictions.decoder = new_embeddings
            self.cls.predictions.bias = new_embeddings.bias
        else:
            self.lm_predictions.lm_head.dense = new_embeddings
            self.lm_predictions.lm_head.bias = new_embeddings.bias

    @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_MASKED_LM,
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
        mask="[MASK]",
        expected_output=_MASKED_LM_EXPECTED_OUTPUT,
        expected_loss=_MASKED_LM_EXPECTED_LOSS,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MaskedLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        if self.legacy:
            prediction_scores = self.cls(sequence_output)
        else:
            prediction_scores = self.lm_predictions(sequence_output, self.deberta.embeddings.word_embeddings)

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class ContextPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
        self.dropout = nn.Dropout(config.pooler_dropout)
        self.config = config

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.

        context_token = hidden_states[:, 0]
        context_token = self.dropout(context_token)
        pooled_output = self.dense(context_token)
        pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
        return pooled_output

    @property
    def output_dim(self):
        return self.config.hidden_size


@add_start_docstrings(
    """
    DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
    pooled output) e.g. for GLUE tasks.
    """,
    DEBERTA_START_DOCSTRING,
)
class DebertaForSequenceClassification(DebertaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        num_labels = getattr(config, "num_labels", 2)
        self.num_labels = num_labels

        self.deberta = DebertaModel(config)
        self.pooler = ContextPooler(config)
        output_dim = self.pooler.output_dim

        self.classifier = nn.Linear(output_dim, num_labels)
        drop_out = getattr(config, "cls_dropout", None)
        drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
        self.dropout = nn.Dropout(drop_out)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.deberta.get_input_embeddings()

    def set_input_embeddings(self, new_embeddings):
        self.deberta.set_input_embeddings(new_embeddings)

    @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deberta(
            input_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        encoder_layer = outputs[0]
        pooled_output = self.pooler(encoder_layer)
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    # regression task
                    loss_fn = nn.MSELoss()
                    logits = logits.view(-1).to(labels.dtype)
                    loss = loss_fn(logits, labels.view(-1))
                elif labels.dim() == 1 or labels.size(-1) == 1:
                    label_index = (labels >= 0).nonzero()
                    labels = labels.long()
                    if label_index.size(0) > 0:
                        labeled_logits = torch.gather(
                            logits, 0, label_index.expand(label_index.size(0), logits.size(1))
                        )
                        labels = torch.gather(labels, 0, label_index.view(-1))
                        loss_fct = CrossEntropyLoss()
                        loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
                    else:
                        loss = torch.tensor(0).to(logits)
                else:
                    log_softmax = nn.LogSoftmax(-1)
                    loss = -((log_softmax(logits) * labels).sum(-1)).mean()
            elif self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
        )


@add_start_docstrings(
    """
    DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
    Named-Entity-Recognition (NER) tasks.
    """,
    DEBERTA_START_DOCSTRING,
)
class DebertaForTokenClassification(DebertaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.deberta = DebertaModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
        )


@add_start_docstrings(
    """
    DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    DEBERTA_START_DOCSTRING,
)
class DebertaForQuestionAnswering(DebertaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.deberta = DebertaModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_QA,
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_QA_EXPECTED_OUTPUT,
        expected_loss=_QA_EXPECTED_LOSS,
        qa_target_start_index=_QA_TARGET_START_INDEX,
        qa_target_end_index=_QA_TARGET_END_INDEX,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        start_positions: Optional[torch.Tensor] = None,
        end_positions: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
        r"""
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[1:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


__all__ = [
    "DebertaForMaskedLM",
    "DebertaForQuestionAnswering",
    "DebertaForSequenceClassification",
    "DebertaForTokenClassification",
    "DebertaModel",
    "DebertaPreTrainedModel",
]
