# coding=utf-8
# Copyright 2022 WenXiang ZhongzhiCheng LedellWu LiuGuang BoWenZhang The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for AltCLIP
"""

from typing import List, Union

from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput
from ...utils.deprecation import deprecate_kwarg


class AltClipProcessorKwargs(ProcessingKwargs, total=False):
    _defaults = {}


class AltCLIPProcessor(ProcessorMixin):
    r"""
    Constructs a AltCLIP processor which wraps a CLIP image processor and a XLM-Roberta tokenizer into a single
    processor.

    [`AltCLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`XLMRobertaTokenizerFast`]. See
    the [`~AltCLIPProcessor.__call__`] and [`~AltCLIPProcessor.decode`] for more information.

    Args:
        image_processor ([`CLIPImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`XLMRobertaTokenizerFast`], *optional*):
            The tokenizer is a required input.
    """

    attributes = ["image_processor", "tokenizer"]
    image_processor_class = ("CLIPImageProcessor", "CLIPImageProcessorFast")
    tokenizer_class = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")

    @deprecate_kwarg(old_name="feature_extractor", version="5.0.0", new_name="image_processor")
    def __init__(self, image_processor=None, tokenizer=None):
        if image_processor is None:
            raise ValueError("You need to specify an `image_processor`.")
        if tokenizer is None:
            raise ValueError("You need to specify a `tokenizer`.")

        super().__init__(image_processor, tokenizer)

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        audio=None,
        videos=None,
        **kwargs: Unpack[AltClipProcessorKwargs],
    ) -> BatchEncoding:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to XLMRobertaTokenizerFast's [`~XLMRobertaTokenizerFast.__call__`] if `text` is not
        `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:

            images (`ImageInput`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.
        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        """

        if text is None and images is None:
            raise ValueError("You must specify either text or images.")

        if text is None and images is None:
            raise ValueError("You must specify either text or images.")
        output_kwargs = self._merge_kwargs(
            AltClipProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        if text is not None:
            encoding = self.tokenizer(text, **output_kwargs["text_kwargs"])
        if images is not None:
            image_features = self.image_processor(images, **output_kwargs["images_kwargs"])

        # BC for explicit return_tensors
        if "return_tensors" in output_kwargs["common_kwargs"]:
            return_tensors = output_kwargs["common_kwargs"].pop("return_tensors", None)

        if text is not None and images is not None:
            encoding["pixel_values"] = image_features.pixel_values
            return encoding
        elif text is not None:
            return encoding
        else:
            return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
        Please refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))


__all__ = ["AltCLIPProcessor"]
