o
    h	c                     @   s   d dl Z d dlZd dlZd dlZd dlmZ d dlmZmZm	Z	m
Z
 d dlZd dlZddlmZ ddlmZ ddlmZmZmZmZmZmZmZmZmZmZmZ e rYd dlm Z  e	d	d
dZ!e"e#Z$G dd deZG dd
 d
eZ%ee%j&e%_&e%j&j'dure%j&j'j(dddde%j&_'dS dS )    N)BytesIO)AnyOptionalTypeVarUnion   )custom_object_save)BatchFeature)IMAGE_PROCESSOR_NAMEPushToHubMixinadd_model_info_to_auto_map"add_model_info_to_custom_pipelinescached_file	copy_funcdownload_urlis_offline_modeis_remote_urlis_vision_availablelogging)ImageImageProcessorTypeImageProcessingMixin)boundc                   @   s   e Zd ZdZdS )r	   a  
    Holds the output of the image processor specific `__call__` methods.

    This class is derived from a python dictionary and can be used as a dictionary.

    Args:
        data (`dict`):
            Dictionary of lists/arrays/tensors returned by the __call__ method ('pixel_values', etc.).
        tensor_type (`Union[None, str, TensorType]`, *optional*):
            You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
            initialization.
    N)__name__
__module____qualname____doc__ r   r   v/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/transformers/image_processing_base.pyr	   7   s    r	   c                   @   s  e Zd ZdZdZdd ZdefddZe						d/d
e	e
 deeejf deeeejf  dededeeeef  dede
fddZd0deeejf defddZedeeejf deeeef eeef f fddZedeeef fddZdeeef fddZedeeejf fd d!Zdefd"d#Zd$eeejf fd%d&Zd'd( Zed1d*d+Zd,eeee f fd-d.ZdS )2r   z
    This is an image processor mixin used to provide saving/loading functionality for sequential and image feature
    extractors.
    Nc                 K   sx   | dd | dd| _| D ](\}}zt| || W q ty9 } ztd| d| d|   |d}~ww dS )z'Set elements of `kwargs` as attributes.feature_extractor_typeNprocessor_classz
Can't set z with value z for )pop_processor_classitemssetattrAttributeErrorloggererror)selfkwargskeyvalueerrr   r   r   __init__O   s   zImageProcessingMixin.__init__r    c                 C   s
   || _ dS )z%Sets processor class as an attribute.N)r"   )r(   r    r   r   r   _set_processor_class^   s   
z)ImageProcessingMixin._set_processor_classFmainclspretrained_model_name_or_path	cache_dirforce_downloadlocal_files_onlytokenrevisionreturnc           
      K   s   ||d< ||d< ||d< ||d< | dd}|dur*tdt |dur(td|}|dur2||d	< | j|fi |\}	}| j|	fi |S )
a  
        Instantiate a type of [`~image_processing_utils.ImageProcessingMixin`] from an image processor.

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                This can be either:

                - a string, the *model id* of a pretrained image_processor hosted inside a model repo on
                  huggingface.co.
                - a path to a *directory* containing a image processor file saved using the
                  [`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
                  `./my_model_directory/`.
                - a path or url to a saved image processor JSON *file*, e.g.,
                  `./my_model_directory/preprocessor_config.json`.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded pretrained model image processor should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force to (re-)download the image processor files and override the cached versions if
                they exist.
            resume_download:
                Deprecated and ignored. All downloads are now resumed by default when possible.
                Will be removed in v5 of Transformers.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.


                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>"`.

                </Tip>

            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                If `False`, then this function returns just the final image processor object. If `True`, then this
                functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
                consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
                `kwargs` which has not been used to update `image_processor` and is otherwise ignored.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
            kwargs (`Dict[str, Any]`, *optional*):
                The values in kwargs of any keys which are image processor attributes will be used to override the
                loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
                controlled by the `return_unused_kwargs` keyword parameter.

        Returns:
            A image processor of type [`~image_processing_utils.ImageProcessingMixin`].

        Examples:

        ```python
        # We can't instantiate directly the base class *ImageProcessingMixin* so let's show the examples on a
        # derived class: *CLIPImageProcessor*
        image_processor = CLIPImageProcessor.from_pretrained(
            "openai/clip-vit-base-patch32"
        )  # Download image_processing_config from huggingface.co and cache.
        image_processor = CLIPImageProcessor.from_pretrained(
            "./test/saved_model/"
        )  # E.g. image processor (or model) was saved using *save_pretrained('./test/saved_model/')*
        image_processor = CLIPImageProcessor.from_pretrained("./test/saved_model/preprocessor_config.json")
        image_processor = CLIPImageProcessor.from_pretrained(
            "openai/clip-vit-base-patch32", do_normalize=False, foo=False
        )
        assert image_processor.do_normalize is False
        image_processor, unused_kwargs = CLIPImageProcessor.from_pretrained(
            "openai/clip-vit-base-patch32", do_normalize=False, foo=False, return_unused_kwargs=True
        )
        assert image_processor.do_normalize is False
        assert unused_kwargs == {"foo": False}
        ```r2   r3   r4   r6   use_auth_tokenNrThe `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.V`token` and `use_auth_token` are both specified. Please set only the argument `token`.r5   )r!   warningswarnFutureWarning
ValueErrorget_image_processor_dict	from_dict)
r0   r1   r2   r3   r4   r5   r6   r)   r8   image_processor_dictr   r   r   from_pretrainedb   s&   Zz$ImageProcessingMixin.from_pretrainedsave_directorypush_to_hubc           	      K   s  | dd}|dur tdt |dddurtd||d< tj|r.t	d| dtj
|dd	 |rX| d
d}| d|tjjd }| j|fi |}| |}| jdurdt| || d tj|t}| | td|  |r| j|||||dd |gS )as  
        Save an image processor object to the directory `save_directory`, so that it can be re-loaded using the
        [`~image_processing_utils.ImageProcessingMixin.from_pretrained`] class method.

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the image processor JSON file will be saved (will be created if it does not exist).
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
        r8   Nr9   r5   r:   zProvided path (z#) should be a directory, not a fileT)exist_okcommit_messagerepo_id)configzImage processor saved in )rF   r5   )r!   r;   r<   r=   getr>   ospathisfileAssertionErrormakedirssplitsep_create_repo_get_files_timestamps_auto_classr   joinr
   to_json_filer&   info_upload_modified_files)	r(   rC   rD   r)   r8   rF   rG   files_timestampsoutput_image_processor_filer   r   r   save_pretrained   sB   


z$ImageProcessingMixin.save_pretrainedc                 K   s~  | dd}| dd}| dd}| dd}| dd}| dd}| d	d}	| d
d}
| dd}| dt}| dd}| dd}|dur\tdt |durZtd|}d|d}|duri||d< t ru|	sutd d}	t	|}t
j|}t
j|rt
j||}t
j|r|}d}n;t|r|}t|}n0|}zt|||||||	|||
|d}W n ty     ty   td| d| d| dw z!t|dd}| }W d   n1 sw   Y  t|}W n tjy   td| dw |rtd |  ||fS td | d!|  d"|v r-t|d" ||d"< d#|v r;t|d# ||d#< ||fS )$a  
        From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
        image processor of type [`~image_processor_utils.ImageProcessingMixin`] using `from_dict`.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
            image_processor_filename (`str`, *optional*, defaults to `"config.json"`):
                The name of the file in the model directory to use for the image processor config.

        Returns:
            `Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the image processor object.
        r2   Nr3   Fresume_downloadproxiesr5   r8   r4   r6   	subfolder image_processor_filename_from_pipeline
_from_autor9   r:   image processor)	file_typefrom_auto_classusing_pipelinez+Offline mode: forcing local_files_only=TrueT)	r2   r3   r]   r\   r4   r5   
user_agentr6   r^   z Can't load image processor for 'z'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'z2' is the correct path to a directory containing a z fileutf-8encodingz"It looks like the config file at 'z' is not a valid JSON file.zloading configuration file z from cache at auto_mapcustom_pipelines)r!   r
   r;   r<   r=   r>   r   r&   rW   strrK   rL   isdirrU   rM   r   r   r   OSError	ExceptionopenreadjsonloadsJSONDecodeErrorr   r   )r0   r1   r)   r2   r3   r\   r]   r5   r8   r4   r6   r^   r`   from_pipelinere   rg   is_localimage_processor_fileresolved_image_processor_filereadertextrA   r   r   r   r?     s   




	



z-ImageProcessingMixin.get_image_processor_dictrA   c                 K   s   |  }|dd}d|v rd|v r|d|d< d|v r(d|v r(|d|d< | di |}g }| D ]\}}t||rIt||| || q5|D ]}||d qLtd|  |rc||fS |S )a  
        Instantiates a type of [`~image_processing_utils.ImageProcessingMixin`] from a Python dictionary of parameters.

        Args:
            image_processor_dict (`Dict[str, Any]`):
                Dictionary that will be used to instantiate the image processor object. Such a dictionary can be
                retrieved from a pretrained checkpoint by leveraging the
                [`~image_processing_utils.ImageProcessingMixin.to_dict`] method.
            kwargs (`Dict[str, Any]`):
                Additional parameters from which to initialize the image processor object.

        Returns:
            [`~image_processing_utils.ImageProcessingMixin`]: The image processor object instantiated from those
            parameters.
        return_unused_kwargsFsize	crop_sizeNzImage processor r   )copyr!   r#   hasattrr$   appendr&   rW   )r0   rA   r)   r|   image_processor	to_remover*   r+   r   r   r   r@     s&   

zImageProcessingMixin.from_dictc                 C   s   t | j}| jj|d< |S )z
        Serializes this instance to a Python dictionary.

        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this image processor instance.
        image_processor_type)r   deepcopy__dict__	__class__r   )r(   outputr   r   r   to_dict  s   zImageProcessingMixin.to_dict	json_filec                 C   sL   t |dd}| }W d   n1 sw   Y  t|}| di |S )a  
        Instantiates a image processor of type [`~image_processing_utils.ImageProcessingMixin`] from the path to a JSON
        file of parameters.

        Args:
            json_file (`str` or `os.PathLike`):
                Path to the JSON file containing the parameters.

        Returns:
            A image processor of type [`~image_processing_utils.ImageProcessingMixin`]: The image_processor object
            instantiated from that JSON file.
        rh   ri   Nr   )rq   rr   rs   rt   )r0   r   rz   r{   rA   r   r   r   from_json_file  s
   

z#ImageProcessingMixin.from_json_filec                 C   sb   |   }| D ]\}}t|tjr| ||< q|dd}|dur'||d< tj|dddd S )z
        Serializes this instance to a JSON string.

        Returns:
            `str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
        r"   Nr       T)indent	sort_keys
)	r   r#   
isinstancenpndarraytolistr!   rs   dumps)r(   
dictionaryr*   r+   r"   r   r   r   to_json_string  s   z#ImageProcessingMixin.to_json_stringjson_file_pathc                 C   sB   t |ddd}||   W d   dS 1 sw   Y  dS )z
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this image_processor instance's parameters will be saved.
        wrh   ri   N)rq   writer   )r(   r   writerr   r   r   rV     s   "z!ImageProcessingMixin.to_json_filec                 C   s   | j j d|   S )N )r   r   r   r(   r   r   r   __repr__  s   zImageProcessingMixin.__repr__AutoImageProcessorc                 C   sD   t |ts|j}ddlm  m} t||st| d|| _dS )a	  
        Register this class with a given auto class. This should only be used for custom image processors as the ones
        in the library are already mapped with `AutoImageProcessor `.

        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoImageProcessor "`):
                The auto class to register this new image processor with.
        r   Nz is not a valid auto class.)	r   rm   r   transformers.models.automodelsautor   r>   rT   )r0   
auto_classauto_moduler   r   r   register_for_auto_class  s   


z,ImageProcessingMixin.register_for_auto_classimage_url_or_urlsc                    sh   ddi}t |tr fdd|D S t |tr+tj|d|d}|  tt|j	S t
dt| )z
        Convert a single or a list of urls into the corresponding `PIL.Image` objects.

        If a single url is passed, the return value will be a single object. If a list is passed a list of objects is
        returned.
        z
User-AgentzuMozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36c                    s   g | ]}  |qS r   )fetch_images).0xr   r   r   
<listcomp>!  s    z5ImageProcessingMixin.fetch_images.<locals>.<listcomp>T)streamheadersz=only a single or a list of entries is supported but got type=)r   listrm   requestsrJ   raise_for_statusr   rq   r   content	TypeErrortype)r(   r   r   responser   r   r   r     s   

z!ImageProcessingMixin.fetch_images)NFFNr/   )F)r   )r   r   r   r   rT   r-   rm   r.   classmethodr   r   r   rK   PathLiker   boolrB   r[   tupledictr   r?   r@   r   r   r   rV   r   r   r   r   r   r   r   r   r   G   s\    	q=x,rc   r   zimage processor file)objectobject_classobject_files))r   rs   rK   r;   ior   typingr   r   r   r   numpyr   r   dynamic_module_utilsr   feature_extraction_utilsr	   BaseBatchFeatureutilsr
   r   r   r   r   r   r   r   r   r   r   PILr   r   
get_loggerr   r&   r   rD   r   formatr   r   r   r   <module>   s4   4
   f