o
    oh6                     @   s*  d dl mZmZmZmZmZmZmZmZm	Z	m
Z
mZmZmZmZmZ d dl mZmZmZmZmZmZ d dlmZmZmZmZmZmZ d dlmZ d dlm Z  d dl!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z' d dl(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4 d dlm5Z5 d d	l6m7Z7 ed
\Z8Z9Z:dd Z;dd Z<dd Z=dd Z>dd Z?dd Z@dd ZAdd ZBdd ZCdd ZDdd  ZEd!d" ZFd#d$ ZGd%d& ZHd'd( ZIe5d)d* ZJd+d, ZKd-d. ZLd/d0 ZMd1d2 ZNd3d4 ZOd5d6 ZPd7d8 ZQd9d: ZRd;d< ZSd=d> ZTd?d@ ZUdAdB ZVdCdD ZWdEdF ZXdGdH ZYdIdJ ZZdKdL Z[dMS )N    )SpioosymbolsFunctionRationalIntegerTupleSymbolEqNeLeLtGtGe)
EulerGammaGoldenRatioCatalanLambdaMulPow)	Piecewisesqrtceilingexpsincos)raises)implemented_function)eyeMatrixMatrixSymbolIdentityHadamardProductSparseMatrix)jnynbesseljbesselybesselibesselkhankel1hankel2airyaiairybiairyaiprimeairybiprime)XFAIL
julia_codezx,y,zc                   C   s,   t tddks
J t tddksJ d S )NC   67z-1)r3   r    r7   r7   s/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/printing/tests/test_julia.pytest_Integer   s   r9   c                   C   s   t tdddksJ t tdddksJ t tdddks!J t td	ddks,J t ttdd d
ks9J t tddt dksFJ d S )N      z3 // 7   	   2iz-3 // 7z
x + 3 // 7z(3 // 7) * x)r3   r   xr7   r7   r7   r8   test_Rational   s   rA   c                   C   s   t tttdksJ t tttdksJ t tttdks!J t tttdks,J t tttdks7J t tttdksBJ d S )Nzx == yzx != yzx <= yzx < yzx > yzx >= y)	r3   r   r@   yr   r   r   r   r   r7   r7   r7   r8   test_Relational!   s   rC   c                   C   sH   t tttt dksJ t ttdksJ t ttdks"J d S )Nzsin(x) .^ cos(x)zabs(x)zceil(x))r3   r   r@   r   absr   r7   r7   r7   r8   test_Function*   s   rE   c               
   C   s   t td dks
J t ttd  dksJ t ttdd dks#J tdttdt } t d| td ttt    td t  d	ksGJ t td
tttttddddddddks_J d S )Nr:   zx .^ 3zx .^ (y .^ 3)   zx .^ (2 // 3)g   g      @z.(3.5 * 2 * x) .^ (-x + y .^ x) ./ (x .^ 2 + y)F)evaluater6   z-2 * x ./ (y .* y))r3   r@   rB   r   r   r   r   r   )rG   r7   r7   r8   test_Pow0   s   *rK   c                   C   sR   t tt dks
J t tt dksJ t tt dksJ t t dks'J d S )Nx .* yzx + yzx - yz-x)r3   r@   rB   r7   r7   r7   r8   test_basic_ops<   s   rM   c                   C   s"  t dt dks
J t td t td   krdks J  J t dtt dks,J t ttj  t td   krAdksDJ  J t ttdksNJ t ttj t td   krbdkseJ  J t dt d	ksoJ t td t td   krd	ksJ  J t td d
ksJ d S )NrH   z1 ./ xr6   g      z1 ./ sqrt(x)g      zsqrt(x)g      ?z1 / piz1 / sqrt(pi))r3   r@   r   r   Halfr   r7   r7   r7   r8   test_1_over_x_and_sqrtC   s   ,0.,rO   c                   C   sJ  t dt dks
J t tt dksJ t dt dksJ t tt dks(J t td dks2J t tt dks<J t tt dksFJ t dt t d	ksRJ t dt t t d
ks`J t tt dksjJ t dt t dksvJ t tt t dksJ t tt t dksJ t dt t dksJ t dt t t t dksJ t dt t dksJ t tdd dksJ t tdd t dksJ t tt t dksJ t tt t dksJ t tt tt  dksJ t tt t dksJ t td t dksJ t tdd t t t dks#J d S )Nr:   z3 * xzpi * xz3 ./ xzpi ./ xzx / 3zx / pirL   z
3 * x .* yz3 * pi * x .* yzx ./ yz
3 * x ./ yzx .* y ./ zzx .* z ./ yrH   z1 ./ (x .* y)rF   z2 * pi * x ./ (y .* z)z3 * pi ./ x   z3 // 5z(3 // 5) * xzx ./ (y .* z)z(x + y) ./ zz(x + y) ./ (x + z)z(x + y) / eulergammazx / (3 * pi)z(3 // 5) * x .* y / pi)r3   r@   r   rB   zr   r   r7   r7   r7   r8   test_mix_number_mult_symbolsQ   s0    *rR   c                   C   s   t td dks
J t td dksJ t ttd  dks J t tt dks*J t ttt  dks6J t tt t dksBJ d S )	Nr:   zpi ^ 3rF   zx .^ 2zx .^ (pi ^ 3)zx .^ yzx .^ (y .^ z)z(x .^ y) .^ z)r3   r   r@   rB   rQ   r7   r7   r7   r8   test_mix_number_pow_symbolsl   s   rS   c                  C   sd   t d} t| dksJ td|  dksJ tt dd |  dks$J tdd|   d	ks0J d S )
NIimrP   5imr:   rF   z(3 // 2) * im   z3 + 4im)r   r3   )rT   r7   r7   r8   	test_imagu   s
   rX   c                   C   s   t tdksJ t tdksJ t t dksJ t tjdks"J t tjdks+J t tjdks4J t tddks>J d S )Nr   Infz-InfNaNerH   )r3   r   r   r   NegativeInfinityrZ   Exp1r   r7   r7   r7   r8   test_constants}   s   r^   c                   C   s@   t dt dks
J t dt dksJ t dt dksJ d S )NrF   z
2 * goldenz2 * catalanz2 * eulergamma)r3   r   r   r   r7   r7   r7   r8   test_constants_other   s   r_   c                   C   s   t tt@ dks
J t ttB dksJ t t dksJ t tt@ t@ dks)J t ttB tB dks5J t tt@ tB dksAJ t ttB t@ dksMJ d S )Nzx && yzx || yz!xzx && y && zzx || y || zzz || x && yzz && (x || y))r3   r@   rB   rQ   r7   r7   r7   r8   test_boolean   s   r`   c                  C   s   t tdddgdksJ tdttd ttgddtgdtdttgg} d}t | |ks1J t | d d df dks?J t | dd d f dksMJ t tddg d	ksYJ t tdd
g dkseJ t tttt t ggdksvJ d S )NrH   
   z[10]rF   r   zB[1 sin(x / 2)  abs(x);
0          1      pi;
0          e ceil(x)]z	[1, 0, 0]z[1 sin(x / 2) abs(x)]zzeros(0, 0)r:   zzeros(0, 3)z[x x - y -y])	r3   r    r   r@   rD   r   r   r   rB   Aexpectedr7   r7   r8   test_Matrices   s   &re   c                  C   sJ   t dtdt dt t d gg} t| dksJ t| jdks#J d S )NrH   rF   r:   rP   z"[1 sin(2 ./ x) (3 // 5) * pi ./ x]z$[1, sin(2 ./ x), (3 // 5) * pi ./ x])r    r   r@   r   r3   Trc   r7   r7   r8   test_vector_entries_hadamard   s   $rh   c                  C   sH   t dtdt dt t d gddtt gg} d}t| |ks"J d S )NrH   rF   r:   rP   z.[1 sin(2/x) 3*pi/(5*x);
1        2        x*y])r    r   r@   r   rB   r3   rb   r7   r7   r8   "test_Matrices_entries_not_hadamard   s   0ri   c                  C   s   t ddd} td| | }td| | }t|| dksJ t|| dks&J td| | d	ks2J t|d | d
ks>J t||dt|    dksNJ t|td  dksZJ t|d dksdJ t|tj dksoJ d S )NnT)integerrc   BzA * BzB * ArF   z	2 * A * Bz	2 * B * Ar:   zA * (3 * eye(n) + B)zA ^ (x .^ 2)zA ^ 3zA ^ (1 // 2))r
   r!   r3   r"   r@   r   rN   )rj   rc   rl   r7   r7   r8   test_MatrixSymbol   s    rm   c                   C   s   t dtd dksJ d S )N   r:   z
6 * eye(3))r3   r"   r7   r7   r7   r8   test_special_matrices   s   ro   c                   C   s   t dddddddggdd	d
gdgdksJ t ddksJ t dgdks'J t ddks/J t tg d dks;J t dtt dtd ffdksLJ t dtdtddg g fdks^J d S )NrH   rF   r:   rW   rP   rn   r;      r=   ra      z5Any[1, 2, 3, Any[4, 5, Any[6, 7]], 8, Any[9, 10], 11])rH   rF   )r:   rW   z(1, 2, (3, 4))zAny[1])rH   z(1,)rH   rF   r:   z	(1, 2, 3)z(1, x .* y, (3, x .^ 2))r   z.(1, [1 0 0;
0 1 0;
0 0 1], zeros(0, 0), Any[]))r3   r	   r@   rB   r   r    r7   r7   r7   r8   test_containers   s   ""(rs   c                  C   s4   t tt t ddd} dtd }| |ksJ d S )NmeF	assign_toinlinez)const Catalan = %s
me = (x + y) / Catalan   )r3   r@   rB   r   evalf)sourcerd   r7   r7   r8   test_julia_noninline   s
   r{   c                     s  t ttdk ftd df t dksJ t dddksJ t ddd	d
ks*J t td tdk ftd tdk ftd tdk ftd df d} t | ksQJ t ddd|  ks]J t ddd	dkshJ t ttdk ftd tdkftttdkf tt fdd d S )NrH   rF   Tz((x < 1) ? (x) : (x .^ 2))rrv   zr = ((x < 1) ? (x) : (x .^ 2))Fru   z,if (x < 1)
    r = x
else
    r = x .^ 2
endr:   rW   rP   zI((x < 1) ? (x .^ 2) :
(x < 2) ? (x .^ 3) :
(x < 3) ? (x .^ 4) : (x .^ 5))zr = zmif (x < 1)
    r = x .^ 2
elseif (x < 2)
    r = x .^ 3
elseif (x < 3)
    r = x .^ 4
else
    r = x .^ 5
endr   c                      s   t  S )Nr2   r7   exprr7   r8   <lambda>   s    z&test_julia_piecewise.<locals>.<lambda>)r   r@   r3   r   r   
ValueError)rd   r7   r~   r8   test_julia_piecewise   s"   
:,r   c                  C   sr   t ttdk ftd df} td|  dksJ t| t dks!J t| tt  dks-J t| d dks7J d S )	NrH   rF   Tz2 * ((x < 1) ? (x) : (x .^ 2))z((x < 1) ? (x) : (x .^ 2)) ./ xz&((x < 1) ? (x) : (x .^ 2)) ./ (x .* y)r:   z((x < 1) ? (x) : (x .^ 2)) / 3)r   r@   r3   rB   )pwr7   r7   r8    test_julia_piecewise_times_const  s
   r   c                  C   sN   t g dg} t| dddksJ t ddgddgg} t| d	dd
ks%J d S )Nrr   ar}   za = [1 2 3]rH   rF   r:   rW   rc   zA = [1 2;
3 4])r    r3   rg   r7   r7   r8   test_julia_matrix_assign_to  s   r   c                     sd   t g dg tddd} tdddt | ddksJ tt fd	d
 tt fdd
 d S )Nrr   rl   rH   r:   CrF   r}   zB = [1 2 3]c                      s   t  tdS Nr}   )r3   r@   r7   rg   r7   r8   r         z2test_julia_matrix_assign_to_more.<locals>.<lambda>c                         t  dS r   r2   r7   rc   r   r7   r8   r     r   r    r!   r3   r   r   rl   r7   r   r8    test_julia_matrix_assign_to_more  s   r   c                     sP   t dgg tddd} tdddt | ddksJ tt fdd	 d S )
Nr:   rl   rH   r   rF   r}   zB = [3]c                      r   r   r2   r7   r   r7   r8   r   #  r   z'test_julia_matrix_1x1.<locals>.<lambda>r   r   r7   r   r8   test_julia_matrix_1x1  s
   r   c                  C   s   t tdtt gg} t| d d | d  | d  dksJ tddd} t| dks,J t| d d t| d  | d  d	ksBJ tt| d
ksLJ d S )NrF   r   r   )r   rH   )r   rF   zx .^ 2 + x .* y + 2AArH   r:   z%sin(AA[1,2]) + AA[1,1] .^ 2 + AA[1,3]zAA[1,1] + AA[1,2] + AA[1,3])r    r@   rB   r3   r!   r   sumrg   r7   r7   r8   test_julia_matrix_elements&  s   ("r   c                   C   sH   t ddksJ t tjdksJ t ddksJ t tjdks"J d S )NTtrueFfalse)r3   r   r   r   r7   r7   r7   r8   test_julia_boolean0  s   r   c                  C   s\   t t ttj W d    n1 sw   Y  td} t| ttdddks,J d S )NfF)strictz:# Not supported in Julia:
# Derivative
Derivative(f(x), x))r   NotImplementedErrorr3   r   ComplexInfinityr   r@   diff)r   r7   r7   r8   test_julia_not_supported7  s   
r   c                  C   sD   t d} t d}t| tdk f|tdkfd}t|dddks J d S )	Nendless	elsewherer   rH   )rH   TF)rw   zCif (x < 0)
    endless
elseif (x <= 1)
    elsewhere
else
    1
end)r   r   r@   r3   )t1t2r   r7   r7   r8   %test_trick_indent_with_end_else_wordsC  s   
r   c                  C   s   t ddd} t ddd}t ddd}t ddd}t| |}t|dks%J t|| dks/J t|| | d	ks;J t||  d
ksEJ t|t t dksQJ d S )Nrc   r:   rl   vrH   hzA .* Bz(A .* B) * vzh * (A .* B) * vz(A .* B) * Az(x .* y) * (A .* B))r!   r#   r3   r@   rB   )rc   rl   r   r   r   r7   r7   r8   test_haramardR  s   
r   c                  C   sL   t ddi } d| d< d| d< d| d< d	| d
< tt | d< t| dks$J d S )NrP   rn   ra   )rF   rF      )rH   rF      )rH   r:      )r   r:   )r:   r   zHsparse([4, 2, 3, 1, 2], [1, 3, 3, 4, 4], [x .* y, 20, 10, 30, 22], 5, 6))r$   r@   rB   r3   )Mr7   r7   r8   test_sparse`  s   r   c                  C   s   t d} ttttfD ]}t|| t|jd ksJ q
tt	t
tfD ]}t|t|jd ks0J q!tt| tdks<J tt| tdksGJ tt| tdksRJ tt| tdks]J d S )Nrj   z(n, x)z(x)zhankelh1(n, x)zhankelh2(n, x)z?sqrt(2) * sqrt(pi) * sqrt(1 ./ x) .* besselj(n + 1 // 2, x) / 2z?sqrt(2) * sqrt(pi) * sqrt(1 ./ x) .* bessely(n + 1 // 2, x) / 2)r
   r'   r(   r)   r*   r3   r@   __name__r-   r/   r.   r0   r+   r,   r%   r&   )rj   r   r7   r7   r8   test_specfunl  s   r   c                  C   sx   t ddd} t ddd}t ddd}t| d dksJ td| d  dks(J |d || | }t|d	ks:J d S )
Nrc   rH   r:   rl   r   r   zA[1,1]z
3 * A[1,1]z(A - B)[1,1])r!   r3   subs)rc   rl   r   Fr7   r7   r8   test_MatrixElement_printingx  s   r   N)\
sympy.corer   r   r   r   r   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   sympy.functionsr   r   r   r   r   r   sympy.testing.pytestr   sympy.utilities.lambdifyr   sympy.matricesr   r    r!   r"   r#   r$   sympy.functions.special.besselr%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   sympy.printing.juliar3   r@   rB   rQ   r9   rA   rC   rE   rK   rM   rO   rR   rS   rX   r^   r_   r`   re   rh   ri   rm   ro   rs   r{   r   r   r   r   r   r   r   r   r   r   r   r   r   r7   r7   r7   r8   <module>   sX   D    8			



	 


