o
    ohly                     @   s   d dl mZ d dlmZ d dlmZ d dlmZmZ ddl	m
Z
mZmZmZmZmZmZ edkr3dgZedZd	gZedgd
G dd	 d	Zd dlmZ d dlmZ dS )    )GROUND_TYPES)import_module)doctest_depends_onZZQQ   )DMBadInputErrorDMDomainErrorDMNonSquareMatrixErrorDMNonInvertibleMatrixErrorDMRankErrorDMShapeErrorDMValueErrorflint*DFMground_typesc                   @   s  e Zd ZdZdZdZdZdd Zedd Z	d	d
 Z
edd Zedd Zedd Zedd Zdd Zdd Zdd Zedd Zdd Zdd Zdd  Zd!d" Zd#d$ Zd%d& Zed'd( Zed)d* Zd+d, Zd-d. Zed/d0 Zd1d2 Zed3d4 Z d5d6 Z!ed7d8 Z"d9d: Z#d;d< Z$d=d> Z%d?d@ Z&dAdB Z'dCdD Z(dEdF Z)dGdH Z*dIdJ Z+dKdL Z,dMdN Z-dOdP Z.dQdR Z/dSdT Z0dUdV Z1dWdX Z2edYdZ Z3ed[d\ Z4ed]d^ Z5ed_d` Z6dadb Z7dcdd Z8dedf Z9dgdh Z:didj Z;dkdl Z<dmdn Z=dodp Z>dqdr Z?dsdt Z@dudv ZAeBdwdxdydz ZCeBdwdxd{d| ZDeBdwdxd}d~ ZEdd ZFeBdwdxdd ZGdd ZHdddZIdd ZJdddZKeBdwdxdddZLeBdwdxdddZMdS )r   a&  
    Dense FLINT matrix. This class is a wrapper for matrices from python-flint.

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.matrices.dfm import DFM
    >>> dfm = DFM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
    >>> dfm
    [[1, 2], [3, 4]]
    >>> dfm.rep
    [1, 2]
    [3, 4]
    >>> type(dfm.rep)  # doctest: +SKIP
    <class 'flint._flint.fmpz_mat'>

    Usually, the DFM class is not instantiated directly, but is created as the
    internal representation of :class:`~.DomainMatrix`. When
    `SYMPY_GROUND_TYPES` is set to `flint` and `python-flint` is installed, the
    :class:`DFM` class is used automatically as the internal representation of
    :class:`~.DomainMatrix` in dense format if the domain is supported by
    python-flint.

    >>> from sympy.polys.matrices.domainmatrix import DM
    >>> dM = DM([[1, 2], [3, 4]], ZZ)
    >>> dM.rep
    [[1, 2], [3, 4]]

    A :class:`~.DomainMatrix` can be converted to :class:`DFM` by calling the
    :meth:`to_dfm` method:

    >>> dM.to_dfm()
    [[1, 2], [3, 4]]

    denseTFc              	   C   sV   |  |}d|vr z||}W n ttfy   td| w || }| |||S )Construct from a nested list.r   z"Input should be a list of list of )_get_flint_func
ValueError	TypeErrorr	   _new)clsrowslistshapedomain	flint_matrep r!   m/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/polys/matrices/_dfm.py__new__m   s   
zDFM.__new__c                 C   s:   |  ||| t| }||_| |_\|_|_||_|S )z)Internal constructor from a flint matrix.)_checkobjectr#   r    r   rowscolsr   )r   r    r   r   objr!   r!   r"   r   {   s   
zDFM._newc                 C   s   |  || j| jS )z>Create a new DFM with the same shape and domain but a new rep.)r   r   r   )selfr    r!   r!   r"   _new_rep      zDFM._new_repc                 C   sp   |  | f}||krtd|tkrt|tjstd|tkr,t|tj	s,td|ttfvr6t
dd S )Nz(Shape of rep does not match shape of DFMzRep is not a flint.fmpz_matzRep is not a flint.fmpq_mat#Only ZZ and QQ are supported by DFM)nrowsncolsr	   r   
isinstancer   fmpz_matRuntimeErrorr   fmpq_matNotImplementedError)r   r    r   r   repshaper!   r!   r"   r$      s   z
DFM._checkc                 C   s   |t tfv S )z4Return True if the given domain is supported by DFM.r   r   r   r!   r!   r"   _supports_domain      zDFM._supports_domainc                 C   s$   |t krtjS |tkrtjS td)z3Return the flint matrix class for the given domain.r,   )r   r   r0   r   r2   r3   r5   r!   r!   r"   r      s
   zDFM._get_flint_funcc                 C   s   |  | jS )z5Callable to create a flint matrix of the same domain.)r   r   r)   r!   r!   r"   _func   r7   z	DFM._funcc                 C   s   t |  S )zReturn ``str(self)``.)strto_ddmr8   r!   r!   r"   __str__      zDFM.__str__c                 C   s   dt |  dd  S )zReturn ``repr(self)``.r      N)reprr;   r8   r!   r!   r"   __repr__   s   zDFM.__repr__c                 C   s&   t |tstS | j|jko| j|jkS )zReturn ``self == other``.)r/   r   NotImplementedr   r    r)   otherr!   r!   r"   __eq__   s   
z
DFM.__eq__c                 C   s   | |||S )r   r!   )r   r   r   r   r!   r!   r"   	from_list   r7   zDFM.from_listc                 C   
   | j  S )zConvert to a nested list.)r    tolistr8   r!   r!   r"   to_list      
zDFM.to_listc                 C   s   |  | | jS )zReturn a copy of self.)r*   r9   r    r8   r!   r!   r"   copy   r+   zDFM.copyc                 C      t |  | j| jS )zConvert to a DDM.)DDMrE   rH   r   r   r8   r!   r!   r"   r;         z
DFM.to_ddmc                 C   rK   )zConvert to a SDM.)SDMrE   rH   r   r   r8   r!   r!   r"   to_sdm   rM   z
DFM.to_sdmc                 C      | S )zReturn self.r!   r8   r!   r!   r"   to_dfm   s   z
DFM.to_dfmc                 C   rP   )aL  
        Convert to a :class:`DFM`.

        This :class:`DFM` method exists to parallel the :class:`~.DDM` and
        :class:`~.SDM` methods. For :class:`DFM` it will always return self.

        See Also
        ========

        to_ddm
        to_sdm
        sympy.polys.matrices.domainmatrix.DomainMatrix.to_dfm_or_ddm
        r!   r8   r!   r!   r"   to_dfm_or_ddm   s   zDFM.to_dfm_or_ddmc                 C   s   |  | |j|jS )zConvert from a DDM.)rE   rH   r   r   )r   ddmr!   r!   r"   from_ddm      zDFM.from_ddmc                 C   sd   |  |}z|g ||R  }W n ty   td|  ty+   td| w | |||S )z Inverse of :meth:`to_list_flat`.z'Incorrect number of elements for shape zInput should be a list of )r   r   r	   r   )r   elementsr   r   funcr    r!   r!   r"   from_list_flat   s   
zDFM.from_list_flatc                 C   rF   )zConvert to a flat list.)r    entriesr8   r!   r!   r"   to_list_flat   rI   zDFM.to_list_flatc                 C      |    S )z$Convert to a flat list of non-zeros.)r;   
to_flat_nzr8   r!   r!   r"   r\      r=   zDFM.to_flat_nzc                 C      t ||| S )zInverse of :meth:`to_flat_nz`.)rL   from_flat_nzrQ   )r   rV   datar   r!   r!   r"   r^         zDFM.from_flat_nzc                 C   r[   )zConvert to a DOD.)r;   to_dodr8   r!   r!   r"   ra     r=   z
DFM.to_dodc                 C   r]   )zInverse of :meth:`to_dod`.)rL   from_dodrQ   )r   dodr   r   r!   r!   r"   rb     r`   zDFM.from_dodc                 C   r[   )zConvert to a DOK.)r;   to_dokr8   r!   r!   r"   rd   
  r=   z
DFM.to_dokc                 C   r]   )zInverse of :math:`to_dod`.)rL   from_dokrQ   )r   dokr   r   r!   r!   r"   re     r`   zDFM.from_dokc                 c   sP    | j \}}| j}t|D ]}t|D ]}|||f }|r$|||f V  qqdS )z0Iterater over the non-zero values of the matrix.Nr   r    ranger)   mnr    ijrepijr!   r!   r"   iter_values     
zDFM.iter_valuesc                 c   sP    | j \}}| j}t|D ]}t|D ]}|||f }|r$||f|fV  qqdS )zBIterate over indices and values of nonzero elements of the matrix.Nrg   ri   r!   r!   r"   
iter_items  rp   zDFM.iter_itemsc                 C   sh   || j kr	|  S |tkr| j tkr| t| j| j|S |tkr0| j tkr0| 	 
| S td)zConvert to a new domain.r,   )r   rJ   r   r   r   r   r2   r    r   r;   
convert_torQ   r3   )r)   r   r!   r!   r"   rr   '  s   
zDFM.convert_toc              
   C   sf   | j \}}|dk r||7 }|dk r||7 }z| j||f W S  ty2   td| d| d| j  w )zGet the ``(i, j)``-th entry.r   Invalid indices (, ) for Matrix of shape r   r    r   
IndexError)r)   rl   rm   rj   rk   r!   r!   r"   getitem5  s   
zDFM.getitemc              
   C   sj   | j \}}|dk r||7 }|dk r||7 }z
|| j||f< W dS  ty4   td| d| d| j  w )zSet the ``(i, j)``-th entry.r   rs   rt   ru   Nrv   )r)   rl   rm   valuerj   rk   r!   r!   r"   setitemC  s   
zDFM.setitemc                    s:   | j   fdd|D }t|tf}| ||| jS )z%Extract a submatrix with no checking.c                    s    g | ]  fd dD qS )c                    s   g | ]} |f qS r!   r!   ).0rm   )Mrl   r!   r"   
<listcomp>U      z+DFM._extract.<locals>.<listcomp>.<listcomp>r!   )r{   r|   	j_indices)rl   r"   r}   U  s     z DFM._extract.<locals>.<listcomp>)r    lenrE   r   )r)   	i_indicesr   lolr   r!   r   r"   _extractQ  s   zDFM._extractc                 C   s   | j \}}g }g }|D ](}|dk r|| }n|}d|  kr"|k s.n td| d| j  || q|D ](}	|	dk rA|	| }
n|	}
d|
  krM|k sYn td|	 d| j  ||
 q6| ||S )zExtract a submatrix.r   zInvalid row index z for Matrix of shape zInvalid column index )r   rw   appendr   )r)   r   colslistrj   rk   new_rowsnew_colsrl   i_posrm   j_posr!   r!   r"   extractY  s$   


zDFM.extractc                 C   s.   | j \}}t|| }t|| }| ||S )zSlice a DFM.)r   rh   r   )r)   rowslicecolslicerj   rk   r   r   r!   r!   r"   extract_slicew  s   
zDFM.extract_slicec                 C   s   |  | j S zNegate a DFM matrix.r*   r    r8   r!   r!   r"   neg  s   zDFM.negc                 C   s   |  | j|j S )zAdd two DFM matrices.r   rB   r!   r!   r"   add  r+   zDFM.addc                 C   s   |  | j|j S )zSubtract two DFM matrices.r   rB   r!   r!   r"   sub  r+   zDFM.subc                 C   s   |  | j| S )z1Multiply a DFM matrix from the right by a scalar.r   rB   r!   r!   r"   mul     zDFM.mulc                 C   s   |  || j S )z0Multiply a DFM matrix from the left by a scalar.r   rB   r!   r!   r"   rmul  r   zDFM.rmulc                 C   s   |   |   S )z/Elementwise multiplication of two DFM matrices.)r;   mul_elementwiserQ   rB   r!   r!   r"   r     rU   zDFM.mul_elementwisec                 C   s$   | j |jf}| | j|j || jS )zMultiply two DFM matrices.)r&   r'   r   r    r   )r)   rC   r   r!   r!   r"   matmul  s   z
DFM.matmulc                 C   s   |   S r   )r   r8   r!   r!   r"   __neg__  s   zDFM.__neg__c                 C   s   |  |}| || ||S )zReturn a zero DFM matrix.)r   r   )r   r   r   rW   r!   r!   r"   zeros  s   
z	DFM.zerosc                 C      t || S )zReturn a one DFM matrix.)rL   onesrQ   )r   r   r   r!   r!   r"   r        zDFM.onesc                 C   r   )z%Return the identity matrix of size n.)rL   eyerQ   )r   rk   r   r!   r!   r"   r     r   zDFM.eyec                 C   r   )zReturn a diagonal matrix.)rL   diagrQ   )r   rV   r   r!   r!   r"   r     s   zDFM.diagc                 C   s   |   || S )z/Apply a function to each entry of a DFM matrix.)r;   	applyfuncrQ   )r)   rW   r   r!   r!   r"   r     s   zDFM.applyfuncc                 C   s   |  | j | j| jf| jS )zTranspose a DFM matrix.)r   r    	transposer'   r&   r   r8   r!   r!   r"   r     s   zDFM.transposec                 G      |   jdd |D   S )zHorizontally stack matrices.c                 S      g | ]}|  qS r!   r;   r{   or!   r!   r"   r}         zDFM.hstack.<locals>.<listcomp>)r;   hstackrQ   r)   othersr!   r!   r"   r        z
DFM.hstackc                 G   r   )zVertically stack matrices.c                 S   r   r!   r   r   r!   r!   r"   r}     r   zDFM.vstack.<locals>.<listcomp>)r;   vstackrQ   r   r!   r!   r"   r     r   z
DFM.vstackc                    s,   | j  | j\}} fddtt||D S )z$Return the diagonal of a DFM matrix.c                    s   g | ]} ||f qS r!   r!   )r{   rl   r|   r!   r"   r}     r~   z DFM.diagonal.<locals>.<listcomp>)r    r   rh   min)r)   rj   rk   r!   r   r"   diagonal  s   
zDFM.diagonalc                 C   s<   | j }t| jD ]}t|D ]}|||f r  dS qqdS )z2Return ``True`` if the matrix is upper triangular.FT)r    rh   r&   r)   r|   rl   rm   r!   r!   r"   is_upper  s   zDFM.is_upperc                 C   sD   | j }t| jD ]}t|d | jD ]}|||f r  dS qqdS )z2Return ``True`` if the matrix is lower triangular.r   FTr    rh   r&   r'   r   r!   r!   r"   is_lower  s   zDFM.is_lowerc                 C   s   |   o|  S )z*Return ``True`` if the matrix is diagonal.)r   r   r8   r!   r!   r"   is_diagonal  r   zDFM.is_diagonalc                 C   s>   | j }t| jD ]}t| jD ]}|||f r  dS qqdS )z1Return ``True`` if the matrix is the zero matrix.FTr   r   r!   r!   r"   is_zero_matrix  s   zDFM.is_zero_matrixc                 C   r[   )z5Return the number of non-zero elements in the matrix.)r;   nnzr8   r!   r!   r"   r     r=   zDFM.nnzc                 C   r[   )z7Return the strongly connected components of the matrix.)r;   sccr8   r!   r!   r"   r     r=   zDFM.sccr   r   c                 C   rF   )a  
        Compute the determinant of the matrix using FLINT.

        Examples
        ========

        >>> from sympy import Matrix
        >>> M = Matrix([[1, 2], [3, 4]])
        >>> dfm = M.to_DM().to_dfm()
        >>> dfm
        [[1, 2], [3, 4]]
        >>> dfm.det()
        -2

        Notes
        =====

        Calls the ``.det()`` method of the underlying FLINT matrix.

        For :ref:`ZZ` or :ref:`QQ` this calls ``fmpz_mat_det`` or
        ``fmpq_mat_det`` respectively.

        At the time of writing the implementation of ``fmpz_mat_det`` uses one
        of several algorithms depending on the size of the matrix and bit size
        of the entries. The algorithms used are:

        - Cofactor for very small (up to 4x4) matrices.
        - Bareiss for small (up to 25x25) matrices.
        - Modular algorithms for larger matrices (up to 60x60) or for larger
          matrices with large bit sizes.
        - Modular "accelerated" for larger matrices (60x60 upwards) if the bit
          size is smaller than the dimensions of the matrix.

        The implementation of ``fmpq_mat_det`` clears denominators from each
        row (not the whole matrix) and then calls ``fmpz_mat_det`` and divides
        by the product of the denominators.

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.det
            Higher level interface to compute the determinant of a matrix.
        )r    detr8   r!   r!   r"   r     s   
1zDFM.detc                 C   s   | j   ddd S )a#  
        Compute the characteristic polynomial of the matrix using FLINT.

        Examples
        ========

        >>> from sympy import Matrix
        >>> M = Matrix([[1, 2], [3, 4]])
        >>> dfm = M.to_DM().to_dfm()  # need ground types = 'flint'
        >>> dfm
        [[1, 2], [3, 4]]
        >>> dfm.charpoly()
        [1, -5, -2]

        Notes
        =====

        Calls the ``.charpoly()`` method of the underlying FLINT matrix.

        For :ref:`ZZ` or :ref:`QQ` this calls ``fmpz_mat_charpoly`` or
        ``fmpq_mat_charpoly`` respectively.

        At the time of writing the implementation of ``fmpq_mat_charpoly``
        clears a denominator from the whole matrix and then calls
        ``fmpz_mat_charpoly``. The coefficients of the characteristic
        polynomial are then multiplied by powers of the denominator.

        The ``fmpz_mat_charpoly`` method uses a modular algorithm with CRT
        reconstruction. The modular algorithm uses ``nmod_mat_charpoly`` which
        uses Berkowitz for small matrices and non-prime moduli or otherwise
        the Danilevsky method.

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly
            Higher level interface to compute the characteristic polynomial of
            a matrix.
        N)r    charpolycoeffsr8   r!   r!   r"   r   0  s   *zDFM.charpolyc                 C   sr   | j }| j\}}||krtd|tkrtd| |tkr3z	| | j W S  t	y2   t
dw td| )a  
        Compute the inverse of a matrix using FLINT.

        Examples
        ========

        >>> from sympy import Matrix, QQ
        >>> M = Matrix([[1, 2], [3, 4]])
        >>> dfm = M.to_DM().to_dfm().convert_to(QQ)
        >>> dfm
        [[1, 2], [3, 4]]
        >>> dfm.inv()
        [[-2, 1], [3/2, -1/2]]
        >>> dfm.matmul(dfm.inv())
        [[1, 0], [0, 1]]

        Notes
        =====

        Calls the ``.inv()`` method of the underlying FLINT matrix.

        For now this will raise an error if the domain is :ref:`ZZ` but will
        use the FLINT method for :ref:`QQ`.

        The FLINT methods for :ref:`ZZ` and :ref:`QQ` are ``fmpz_mat_inv`` and
        ``fmpq_mat_inv`` respectively. The ``fmpz_mat_inv`` method computes an
        inverse with denominator. This is implemented by calling
        ``fmpz_mat_solve`` (see notes in :meth:`lu_solve` about the algorithm).

        The ``fmpq_mat_inv`` method clears denominators from each row and then
        multiplies those into the rhs identity matrix before calling
        ``fmpz_mat_solve``.

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.inv
            Higher level method for computing the inverse of a matrix.
        z!cannot invert a non-square matrixzfield expected, got %szmatrix is not invertiblez#DFM.inv() is not implemented for %s)r   r   r   r   r
   r   r*   r    invZeroDivisionErrorr   r3   )r)   Krj   rk   r!   r!   r"   r   \  s   7
zDFM.invc                 C   s$   |    \}}}| | |fS )z*Return the LU decomposition of the matrix.)r;   lurQ   )r)   LUswapsr!   r!   r"   r     s   zDFM.luc                 C   s   | j |j kstd| j |j f | j jstd| j  | j\}}|j\}}||kr3td||||f ||f}||krF|  |  S z	| j	|j}W n t
yZ   tdw | ||| j S )a  
        Solve a matrix equation using FLINT.

        Examples
        ========

        >>> from sympy import Matrix, QQ
        >>> M = Matrix([[1, 2], [3, 4]])
        >>> dfm = M.to_DM().to_dfm().convert_to(QQ)
        >>> dfm
        [[1, 2], [3, 4]]
        >>> rhs = Matrix([1, 2]).to_DM().to_dfm().convert_to(QQ)
        >>> dfm.lu_solve(rhs)
        [[0], [1/2]]

        Notes
        =====

        Calls the ``.solve()`` method of the underlying FLINT matrix.

        For now this will raise an error if the domain is :ref:`ZZ` but will
        use the FLINT method for :ref:`QQ`.

        The FLINT methods for :ref:`ZZ` and :ref:`QQ` are ``fmpz_mat_solve``
        and ``fmpq_mat_solve`` respectively. The ``fmpq_mat_solve`` method
        uses one of two algorithms:

        - For small matrices (<25 rows) it clears denominators between the
          matrix and rhs and uses ``fmpz_mat_solve``.
        - For larger matrices it uses ``fmpq_mat_solve_dixon`` which is a
          modular approach with CRT reconstruction over :ref:`QQ`.

        The ``fmpz_mat_solve`` method uses one of four algorithms:

        - For very small (<= 3x3) matrices it uses a Cramer's rule.
        - For small (<= 15x15) matrices it uses a fraction-free LU solve.
        - Otherwise it uses either Dixon or another multimodular approach.

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.lu_solve
            Higher level interface to solve a matrix equation.
        zDomains must match: %s != %szField expected, got %sz(Matrix size mismatch: %s * %s vs %s * %sz Matrix det == 0; not invertible.)r   r
   is_Fieldr   r   r;   lu_solverQ   r    solver   r   r   )r)   rhsrj   rk   rm   k	sol_shapesolr!   r!   r"   r     s"   .

zDFM.lu_solvec                 C   s   |    \}}| |fS )/Return a basis for the nullspace of the matrix.)r;   	nullspacerQ   )r)   rS   	nonpivotsr!   r!   r"   r      s   zDFM.nullspaceNc                 C   s    |   j|d\}}| |fS )r   )pivots)rO   nullspace_from_rrefrQ   )r)   r   sdmr   r!   r!   r"   r     s   zDFM.nullspace_from_rrefc                 C   s   |     S )z+Return a particular solution to the system.)r;   
particularrQ   r8   r!   r!   r"   r     r   zDFM.particularGz?RQ?zbasisapproxc           	      C   sr   dd }||}||}d|  k rdk st d t d| j\}}| j |kr.td| jj|||||dS )zACall the fmpz_mat.lll() method but check rank to avoid segfaults.c                 S   s&   t | rt| jt| j S t| S N)r   of_typefloat	numeratordenominator)xr!   r!   r"   to_float*  s   
zDFM._lll.<locals>.to_floatg      ?r   z delta must be between 0.25 and 1z-Matrix must have full row rank for Flint LLL.)	transformdeltaetar    gram)r   r   r    rankr   lll)	r)   r   r   r   r    r   r   rj   rk   r!   r!   r"   _lll   s   

zDFM._lll      ?c                 C   sB   | j tkrtd| j  | j| jkrtd| j|d}| |S )a  Compute LLL-reduced basis using FLINT.

        See :meth:`lll_transform` for more information.

        Examples
        ========

        >>> from sympy import Matrix
        >>> M = Matrix([[1, 2, 3], [4, 5, 6]])
        >>> M.to_DM().to_dfm().lll()
        [[2, 1, 0], [-1, 1, 3]]

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.lll
            Higher level interface to compute LLL-reduced basis.
        lll_transform
            Compute LLL-reduced basis and transform matrix.
        ZZ expected, got %s,Matrix must not have more rows than columns.)r   )r   r   r
   r&   r'   r   r   r*   )r)   r   r    r!   r!   r"   r   >  s   

zDFM.lllc                 C   sh   | j tkrtd| j  | j| jkrtd| jd|d\}}| |}| || j| jf| j }||fS )ad  Compute LLL-reduced basis and transform using FLINT.

        Examples
        ========

        >>> from sympy import Matrix
        >>> M = Matrix([[1, 2, 3], [4, 5, 6]]).to_DM().to_dfm()
        >>> M_lll, T = M.lll_transform()
        >>> M_lll
        [[2, 1, 0], [-1, 1, 3]]
        >>> T
        [[-2, 1], [3, -1]]
        >>> T.matmul(M) == M_lll
        True

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.lll
            Higher level interface to compute LLL-reduced basis.
        lll
            Compute LLL-reduced basis without transform matrix.
        r   r   T)r   r   )	r   r   r
   r&   r'   r   r   r*   r   )r)   r   r    TbasisT_dfmr!   r!   r"   lll_transform\  s   

zDFM.lll_transformr   )Fr   r   r   r   )r   )N__name__
__module____qualname____doc__fmtis_DFMis_DDMr#   classmethodr   r*   r$   r6   r   propertyr9   r<   r@   rD   rE   rH   rJ   r;   rO   rQ   rR   rT   rX   rZ   r\   r^   ra   rb   rd   re   ro   rq   rr   rx   rz   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r!   r!   r!   r"   r   E   s    "
	


	
	







	
	


			
2
+
H
J

)rL   )rN   N)sympy.external.gmpyr   sympy.external.importtoolsr   sympy.utilities.decoratorr   sympy.polys.domainsr   r   
exceptionsr	   r
   r   r   r   r   r   __doctest_skip__r   __all__r   sympy.polys.matrices.ddmrL   rN   r!   r!   r!   r"   <module>   s&   )$
      A