o
    oh+                     @   s  d Z ddlmZmZmZmZmZmZ ddlm	Z	 ddl
mZ ddlmZ ddlmZmZmZmZ ddlmZmZmZmZmZmZ ddlmZ dd	lmZ dd
lmZ ddl m!Z!m"Z" ddl#m$Z$ ddl%m&Z&m'Z'm(Z( e'd@ddZ)e'd@ddZ*e'ddddZ+e'edfddZ,e'dAddZ-dd Z.dd  Z/d!d" Z0d#d$ Z1d%d& Z2d'd( Z3dd)l4m5Z5 d*d+ Z6d,d- Z7d.d/ Z8d0d1 Z9d2d3 Z:d4d5 Z;d6d7 Z<d8d9 Z=d:d; Z>d<d= Z?d>d? Z@dS )BzIFunctions for generating interesting polynomials, e.g. for benchmarking.     )AddMulSymbolsympifyDummysymbols)Tuple)S)	nextprime)dmp_add_termdmp_negdmp_muldmp_sqr)dmp_zerodmp_one
dmp_grounddup_from_raw_dict	dmp_raise
dup_random)ZZ)dup_zz_cyclotomic_poly)DMP)PolyPurePoly)_analyze_gens)subsetspublic
filldedentNFc           	      C   s  | dkr
t d|  |durt| ntd}| dkrLddlm} ddlm} d	}|d	g}td	| d D ]}t|}|	|| q5|t
| ||d
S | dkrW|d	 d	 }n-| d	krh|d d|d	   d }n| dkr|d d|d   d|d   d|d	   d }|rt||S |S )a  Generates n-th Swinnerton-Dyer polynomial in `x`.

    Parameters
    ----------
    n : int
        `n` decides the order of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    r   z6Cannot generate Swinnerton-Dyer polynomial of order %sNx   )sqrt   )minimal_polynomial   polys   
      (      i`  i  i@  )
ValueErrorr   r   (sympy.functions.elementary.miscellaneousr    numberfieldsr"   ranger
   appendr   r   )	nr   r%   r    r"   paiex r5   l/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/polys/specialpolys.pyswinnerton_dyer_poly   s.   

0r7   c                 C   s^   | dkr
t d|  ttt| tt}|durt||}nt|td}|r+|S |	 S )a  Generates cyclotomic polynomial of order `n` in `x`.

    Parameters
    ----------
    n : int
        `n` decides the order of polynomial
    x : optional
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    r   z1Cannot generate cyclotomic polynomial of order %sNr   )
r+   r   r   intr   r   newr   r   as_expr)r0   r   r%   polyr5   r5   r6   cyclotomic_polyA   s   r<   r$   c                G   sp   t |}| dk s| t|ks|std| |f | stj}ntdd t|t| D  }|r6t|g|R  S |S )z
    Generates symmetric polynomial of order `n`.

    Parameters
    ==========

    polys: bool, optional (default: False)
        Returns a Poly object when ``polys=True``, otherwise
        (default) returns an expression.
    r   z7Cannot generate symmetric polynomial of order %s for %sc                 S   s   g | ]}t | qS r5   )r   ).0sr5   r5   r6   
<listcomp>o       z"symmetric_poly.<locals>.<listcomp>)	r   lenr+   r	   Oner   r   r8   r   )r0   r%   gensr;   r5   r5   r6   symmetric_poly\   s   rD   c                 C   s(   t t||||| |d}|r|S | S )a\  Generates a polynomial of degree ``n`` with coefficients in
    ``[inf, sup]``.

    Parameters
    ----------
    x
        `x` is the independent term of polynomial
    n : int
        `n` decides the order of polynomial
    inf
        Lower limit of range in which coefficients lie
    sup
        Upper limit of range in which coefficients lie
    domain : optional
         Decides what ring the coefficients are supposed
         to belong. Default is set to Integers.
    polys : bool, optional
        ``polys=True`` returns an expression, otherwise
        (default) returns an expression.
    )domain)r   r   r:   )r   r0   infsuprE   r%   r;   r5   r5   r6   random_polyt   s   rH   r   yc           	         s   t dd}t trtd | f  n|r|t  j@ rd}t|tr-td|| f }n|r8|t| j@ r8d}|s@ttdg }t fddt	| D  }t	| D ]|    }t fddt	| D  }|
||  qTtd	d t||D  S )
zConstruct Lagrange interpolating polynomial for ``n``
    data points. If a sequence of values are given for ``X`` and ``Y``
    then the first ``n`` values will be used.
    free_symbolsNz%s:%sFz~
            Expecting symbol for x that does not appear in X or Y.
            Use `interpolate(list(zip(X, Y)), x)` instead.c                    s   g | ]} |  qS r5   r5   r=   r3   )Xr   r5   r6   r?          z&interpolating_poly.<locals>.<listcomp>c                    s$   g | ]}|kr   |  qS r5   r5   )r=   j)rL   r3   r5   r6   r?      s   $ c                 S   s   g | ]\}}|| qS r5   r5   )r=   coeffrI   r5   r5   r6   r?      rM   )getattr
isinstancestrr   r   rJ   r+   r   r   r.   r/   r   zip)	r0   r   rL   Yokcoeffsnumertnumerdenomr5   )rL   r3   r   r6   interpolating_poly   s$   

rZ   c           	      C   s   dd t | d D }|d |d }}|t|dd   }|d tdd |dd D   }|d |d  j| }|d d| |d  |d  d  j| }tdg|R  }|||fS )	%Fateman's GCD benchmark: trivial GCD c                 S      g | ]
}t d t| qS y_r   rR   rK   r5   r5   r6   r?          z$fateman_poly_F_1.<locals>.<listcomp>r!   r   Nr#   c                 S   s   g | ]}|d  qS )r#   r5   r=   rI   r5   r5   r6   r?      r@   )r.   r   as_polyr   )	r0   rT   y_0y_1uvFGHr5   r5   r6   fateman_poly_F_1   s   "*
rk   c                 C   s&  |d|dg}t | D ]	}t|||g}q|d|d|dg}t d| D ]}t||t||g}q&| d }t|t|d|d| |}t|t|d|d| |}|d |dgg |d|d|d gg}t|t|d|d| |}	t||d|}
t||| |}t|	|
| |}t| |}|||fS )r[   r!   r   r#   r   )r.   r   r   r   r   r   r   )r0   Krf   r3   rg   mUVfWrT   rh   ri   rj   r5   r5   r6   dmp_fateman_poly_F_1   s    ,

rr   c                 C   s   dd t | d D }|d }t|dd  }t|| d d g|R  }t|| d d g|R  }t|| d d g|R  }|| || |fS )7Fateman's GCD benchmark: linearly dense quartic inputs c                 S   r\   r]   r_   rK   r5   r5   r6   r?      r`   z$fateman_poly_F_2.<locals>.<listcomp>r!   r   Nr#   r.   r   r   r0   rT   rd   rf   rj   rh   ri   r5   r5   r6   fateman_poly_F_2   s   rv   c           	      C   s   |d|dg}t | d D ]	}t|||g}q| d }t|t|d|d d| |}tt||t|||g| |}tt|||g| |}t|t|d |d| |}tt|||g| |}t||| |t||| ||fS )rs   r!   r   r#   )r.   r   r   r   r   r   r   )	r0   rl   rf   r3   rm   rg   rp   ghr5   r5   r6   dmp_fateman_poly_F_2   s   ry   c                    s   dd t  d D }|d }t fdd|dd D  }t| d  | d d g|R  }t| d  | d d g|R  }t| d  | d d g|R  }|| || |fS )8Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) c                 S   r\   r]   r_   rK   r5   r5   r6   r?     r`   z$fateman_poly_F_3.<locals>.<listcomp>r!   r   c                    s   g | ]}| d   qS )r!   r5   ra   r0   r5   r6   r?     rM   Nr#   rt   ru   r5   r{   r6   fateman_poly_F_3  s   $$$r|   c                 C   s&  t | d |ji|}td| d D ]}t|gt||| d |d |}qt|t|d| d d| |}ttt|| d |gt| d || d | || |}tt|gt| d || d | || |}t|t| d |d| d |}tt|gt| d || d | || |}t||| |t||| ||fS )rz   r!   r   r#   )	r   oner.   r   r   r   r   r   r   )r0   rl   rf   r3   rg   rp   rw   rx   r5   r5   r6   dmp_fateman_poly_F_3  s   ".((r~   )ringc                  C   s   t dt\} }}}|d | |d  d|d  | |  d|d  |  d|d   d|  d|d  |d   d|d  |  d|d   ||d   d| |  | d S )Nx,y,zr#   r   r&      r*   r!   r   r   Rr   rI   zr5   r5   r6   _f_0,  s   r   c                  C   sr  t dt\} }}}|d | | |d |d  |d   |d |d   d|d  | |  d|d  |  |d |d   d|d  |  ||d  |  d| |d  |  d| |d   || |d   d| | |d   || |  d| |  d| |d   d| |  d	|  |d |d   d|d  |  d| |d   d
| |  d|  d|  d S )Nr   r   r#         r'   ib     i,  i@     iX  ip  r   r   r5   r5   r6   _f_10  s   b r   c                  C   s  t dt\} }}}|d |d  |d |d  |  |d | |d   |d |d   |d |d   |d | |  d|d  |  d|d  |  |d |d  |  d|d  |d   |d |d   d|d  |d   ||  d|  d|  d S )Nr   r   r   r#   Z      i  r   r   r5   r5   r6   _f_24  s   r   c                  C   s  t dt\} }}}|d |d  |d |d   |d  |d |d  |  |d |  |d |d   |d |d  |d   |d | |d   |d | |  ||d  |d   ||d   || |d   || |d   || |d   |d |  ||d   S )Nr   r   r#   r&   r      r   r   r5   r5   r6   _f_38  s   r   c                  C   sT  t dt\} }}}|d  |d  | |d |d  |d   |d |d  |d   d|d  |d   |d	 |d  |d
   |d	 |d  |d   d|d	  |d  |  d|d	  |d  |d   |d	 |d
  |d   |d |d
  |d   d|d  |d
  |d   |d | |d   |d
 |d  |d
   d|d
  |d  |d   |d
 |d  |d
   d|d
  |d  |d   d|d
  |d   d|d
  |d
  |d   |d |d  |d	   d|d  |d  |d
   |d |d  |d	   d|d  |d
  |d
   d|d  |d
  |d   |d |d  |d   d|d  |d  |d   d|d  | |d
   |d |d   d|d  |d   ||d  |d	   d| |d  |d
   d| |d  |d
   d| |d  |d   |d
 |d   d|d
  |d	   d|d	   d|d
   S )Nr   	   r(   r   r   r      r#   r*   r&   r      r   r   r5   r5   r6   _f_4<  s
     H r   c                  C   s   t dt\} }}}|d  d|d  |  d|d  |  d| |d   d| | |  d| |d   |d  d|d  |  d| |d   |d  S )Nr   r   r#   r*   r   r   r5   r5   r6   _f_5@  s   r   c                  C   s@  t dt\} }}}}d|d  | d|d  |d  |d   d|d  |d   d| |d   d| |d   d	| | |d   d
| | | |  d|d  |d  |d   d|d  |d   |d |d  |d   |d |d   d|d  |d   d|d  |d   d|d  |d   d| |d   S )Nzx,y,z,tiC  r&   -   r   r#   i  /      ^   r   r*   r   )r   r   rI   r   tr5   r5   r6   _f_6D  s   . r   c                  C   s  t dt\} }}}d|d  |d  |d  d|d  |d  |d   d|d  |d  |d   d|d  | |d   |d |d  |d   d|d  |d  |  |d |d  |d   d|d  |d  |d   d|d  | |d   d|d  |d   d|d  |d   d|d  |d  |d   d|d  |d  |  d|d  |d  |d   d|d  |d  |d   d|d  |d  |d   d|d  | |d   d|d  | |d   d|d  | |d   d|d  |d  |  |d |d  |d   |d |d  |d   d|d  |d  |d   d	|d  |d  |  d|d  | |d   d|d  | |d   d|d  |d   d|d  |d   d|d  |d   d|d  |d  |d   d|d  |d  |  d|d  | |d   d|d  | |d   d|d  | |d   d| |d  |  d| |d  |d   d| | |  d| |d   d|d   d| |d   S )
Nr   r&   r*   r#   r   r   r   r(   r   r   r   r5   r5   r6   _w_1H  s
      r   c                  C   sx  t dt\} }}d|d  |d  d|d  |d   d|d  |d   d	|d  |d   d
|d  |d   d|d  |d   d|d  |  d|d   |d |d   |d |d   d|d   |d |d   |d |d   d|d  |d   d|d  |d   |d |d   d|d  |d   |d |d   d|d  |d   d|d   d|d   S )Nzx,y   r(   r   0   r#   r   r   H      r*   r&   r   i$  r   )r   r   rI   r5   r5   r6   _w_2L  s   j r   c                   C   s    t  t t t t t t fS N)r   r   r   r   r   r   r   r5   r5   r5   r6   f_polysP  s    r   c                   C   s   t  t fS r   )r   r   r5   r5   r5   r6   w_polysS  s   r   )NF)r   rI   )A__doc__
sympy.corer   r   r   r   r   r   sympy.core.containersr   sympy.core.singletonr	   sympy.ntheoryr
   sympy.polys.densearithr   r   r   r   sympy.polys.densebasicr   r   r   r   r   r   sympy.polys.domainsr   sympy.polys.factortoolsr   sympy.polys.polyclassesr   sympy.polys.polytoolsr   r   sympy.polys.polyutilsr   sympy.utilitiesr   r   r   r7   r<   rD   rH   rZ   rk   rr   rv   ry   r|   r~   sympy.polys.ringsr   r   r   r   r   r   r   r   r   r   r   r   r5   r5   r5   r6   <module>   sR      )!