o
    ohc!                     @   s   d Z ddlmZmZmZmZ ddlmZmZm	Z	m
Z
 ddlmZmZ ddlmZmZ ddlmZmZ ddlmZ ddlmZmZmZ ed	d
 Zedd Zedd ZeedfddZedddZdS )z/High-level polynomials manipulation functions.     )SBasicsymbolsDummy)PolificationFailedComputationFailedMultivariatePolynomialErrorOptionError)allowed_flagsbuild_options)poly_from_exprPoly)symmetric_polyinterpolating_poly)sring)numbered_symbolstakepublicc                    s  t |ddg d}t| dsd}| g} t| g|R i |\}} |j}t||}|j  fddtt|D  g }| D ]}| \}}	}
||j	  |	j	| f q<dd t
 |
D }|jstt|D ]\}\}}|||f||< qd|sy|\}|js~|S |r||fS ||f S )	a  
    Rewrite a polynomial in terms of elementary symmetric polynomials.

    A symmetric polynomial is a multivariate polynomial that remains invariant
    under any variable permutation, i.e., if `f = f(x_1, x_2, \dots, x_n)`,
    then `f = f(x_{i_1}, x_{i_2}, \dots, x_{i_n})`, where
    `(i_1, i_2, \dots, i_n)` is a permutation of `(1, 2, \dots, n)` (an
    element of the group `S_n`).

    Returns a tuple of symmetric polynomials ``(f1, f2, ..., fn)`` such that
    ``f = f1 + f2 + ... + fn``.

    Examples
    ========

    >>> from sympy.polys.polyfuncs import symmetrize
    >>> from sympy.abc import x, y

    >>> symmetrize(x**2 + y**2)
    (-2*x*y + (x + y)**2, 0)

    >>> symmetrize(x**2 + y**2, formal=True)
    (s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])

    >>> symmetrize(x**2 - y**2)
    (-2*x*y + (x + y)**2, -2*y**2)

    >>> symmetrize(x**2 - y**2, formal=True)
    (s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])

    formalr   T__iter__Fc                    s   g | ]}t  qS  )next.0ir   r   i/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/polys/polyfuncs.py
<listcomp>=   s    zsymmetrize.<locals>.<listcomp>c                 S   s    g | ]\}\}}||  fqS r   )as_expr)r   s_gr   r   r   r   E   s     )r
   hasattrr   r   r   rangelen
symmetrizeappendr   zipr   	enumeratesubs)FgensargsiterableRoptresultfprmpolysr   symnon_symr   r   r   r%      s2   !


r%   c           	   
   O   s   t |g  zt| g|R i |\}}W n ty) } z	|jW  Y d}~S d}~ww tj|j}}|jrC| D ]}|| | }q8|S t	|||dd }}| D ]}|| t
|g|R i | }qS|S )a  
    Rewrite a polynomial in Horner form.

    Among other applications, evaluation of a polynomial at a point is optimal
    when it is applied using the Horner scheme ([1]).

    Examples
    ========

    >>> from sympy.polys.polyfuncs import horner
    >>> from sympy.abc import x, y, a, b, c, d, e

    >>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5)
    x*(x*(x*(9*x + 8) + 7) + 6) + 5

    >>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e)
    e + x*(d + x*(c + x*(a*x + b)))

    >>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y

    >>> horner(f, wrt=x)
    x*(x*y*(4*y + 2) + y*(2*y + 1))

    >>> horner(f, wrt=y)
    y*(x*y*(4*x + 2) + x*(2*x + 1))

    References
    ==========
    [1] - https://en.wikipedia.org/wiki/Horner_scheme

    N   )r
   r   r   exprr   Zerogenis_univariate
all_coeffsr   horner)	r1   r+   r,   r*   r/   excformr;   coeffr   r   r   r>   W   s    
! r>   c                 C   s   t | }t| tr|| v rt| | S tt|   \}}n;t| d tr;tt|  \}}||v r:t||| S n|t	d|d v rLt| |d  S t| }tt	d|d }z
t
|||| W S  ty|   t }t
|||| || Y S w )a)  
    Construct an interpolating polynomial for the data points
    evaluated at point x (which can be symbolic or numeric).

    Examples
    ========

    >>> from sympy.polys.polyfuncs import interpolate
    >>> from sympy.abc import a, b, x

    A list is interpreted as though it were paired with a range starting
    from 1:

    >>> interpolate([1, 4, 9, 16], x)
    x**2

    This can be made explicit by giving a list of coordinates:

    >>> interpolate([(1, 1), (2, 4), (3, 9)], x)
    x**2

    The (x, y) coordinates can also be given as keys and values of a
    dictionary (and the points need not be equispaced):

    >>> interpolate([(-1, 2), (1, 2), (2, 5)], x)
    x**2 + 1
    >>> interpolate({-1: 2, 1: 2, 2: 5}, x)
    x**2 + 1

    If the interpolation is going to be used only once then the
    value of interest can be passed instead of passing a symbol:

    >>> interpolate([1, 4, 9], 5)
    25

    Symbolic coordinates are also supported:

    >>> [(i,interpolate((a, b), i)) for i in range(1, 4)]
    [(1, a), (2, b), (3, -a + 2*b)]
    r   r8   )r$   
isinstancedictr   listr'   itemstupleindexr#   r   expand
ValueErrorr   r)   )dataxnXYdr   r   r   interpolate   s(   *
rP   rK   c           
         sD  ddl m} tt|  \}}t| d }|dk rtd|| d | d }tt|D ]}t| d D ]}	||	|f ||	  ||	|d f< q<q2t|d D ]$}t| d D ]}	||	|| f  ||	  ||	| d | f< q`qV| d t	 fddtd D t	 fddt|d D  S )	a  
    Returns a rational interpolation, where the data points are element of
    any integral domain.

    The first argument  contains the data (as a list of coordinates). The
    ``degnum`` argument is the degree in the numerator of the rational
    function. Setting it too high will decrease the maximal degree in the
    denominator for the same amount of data.

    Examples
    ========

    >>> from sympy.polys.polyfuncs import rational_interpolate

    >>> data = [(1, -210), (2, -35), (3, 105), (4, 231), (5, 350), (6, 465)]
    >>> rational_interpolate(data, 2)
    (105*x**2 - 525)/(x + 1)

    Values do not need to be integers:

    >>> from sympy import sympify
    >>> x = [1, 2, 3, 4, 5, 6]
    >>> y = sympify("[-1, 0, 2, 22/5, 7, 68/7]")
    >>> rational_interpolate(zip(x, y), 2)
    (3*x**2 - 7*x + 2)/(x + 1)

    The symbol for the variable can be changed if needed:
    >>> from sympy import symbols
    >>> z = symbols('z')
    >>> rational_interpolate(data, 2, X=z)
    (105*z**2 - 525)/(z + 1)

    References
    ==========

    .. [1] Algorithm is adapted from:
           http://axiom-wiki.newsynthesis.org/RationalInterpolation

    r   )onesr8   z'Too few values for the required degree.   c                 3   s     | ]}|  |  V  qd S Nr   r   )rM   r3   r   r   	<genexpr>  s    z'rational_interpolate.<locals>.<genexpr>c                 3   s(    | ]}| d    |  V  qdS )r8   Nr   r   rM   degnumr3   r   r   rT     s   & )
sympy.matrices.denserQ   rD   r'   r$   r	   r#   max	nullspacesum)
rJ   rV   rM   rQ   xdataydatakcjr   r   rU   r   rational_interpolate   s$   )"0 r`   Nc              
   O   s4  t |g  t|tr|f| d}}zt| g|R i |\} }W n ty3 } ztdd|d}~ww | jr;td|  }|dk rGt	d|du rQt
ddd}t||}|t|krft	d|t|f |  |  }}g d	}	}
t|dd D ]\}}t|d |}|
||  }|	||f |
 }
q||	S )
a#  
    Generate Viete's formulas for ``f``.

    Examples
    ========

    >>> from sympy.polys.polyfuncs import viete
    >>> from sympy import symbols

    >>> x, a, b, c, r1, r2 = symbols('x,a:c,r1:3')

    >>> viete(a*x**2 + b*x + c, [r1, r2], x)
    [(r1 + r2, -b/a), (r1*r2, c/a)]

    Nvieter8   z(multivariate polynomials are not allowedz8Cannot derive Viete's formulas for a constant polynomialr3   )startzrequired %s roots, got %s)r
   rB   r   r   r   r   is_multivariater   degreerI   r   r   r$   LCr=   r(   r   r&   )r1   rootsr+   r,   r/   r?   rL   lccoeffsr0   signr   rA   polyr   r   r   ra     s>   



ra   rS   )__doc__
sympy.corer   r   r   r   sympy.polys.polyerrorsr   r   r   r	   sympy.polys.polyoptionsr
   r   sympy.polys.polytoolsr   r   sympy.polys.specialpolysr   r   sympy.polys.ringsr   sympy.utilitiesr   r   r   r%   r>   rP   r`   ra   r   r   r   r   <module>   s$    
G
5
A;