o
    oÇhl  ã                   @   s0   d dl mZ d dlmZ ddd„Zddd„ZdS )	é    )ÚS)ÚPolyNc                 O   s‚  |durdnd}|r| }t | g|¢R i |¤Ž} t |g|¢R i |¤Ž}| jr(|js,tdƒ‚| j|jks6tdƒ‚| j}|  ¡ dk sE| ¡ dk rHdhS |  ¡ }|sR| ¡ n|}tƒ }|d D ]c\}	}
|d D ]Z\}}
|	 ¡ }| ¡ }||krtqc|	 ¡ }| ¡ }|| js‚qc|	 	||d  ¡}| 	||d  ¡}|| t
|| ƒ }|js¢qc|dk sª||v r«qc|dkr¸|	| |¡ js¸qc| |¡ qcq[|S )a=  Compute the *dispersion set* of two polynomials.

    For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
    and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as:

    .. math::
        \operatorname{J}(f, g)
        & := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\
        &  = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}

    For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`.

    Examples
    ========

    >>> from sympy import poly
    >>> from sympy.polys.dispersion import dispersion, dispersionset
    >>> from sympy.abc import x

    Dispersion set and dispersion of a simple polynomial:

    >>> fp = poly((x - 3)*(x + 3), x)
    >>> sorted(dispersionset(fp))
    [0, 6]
    >>> dispersion(fp)
    6

    Note that the definition of the dispersion is not symmetric:

    >>> fp = poly(x**4 - 3*x**2 + 1, x)
    >>> gp = fp.shift(-3)
    >>> sorted(dispersionset(fp, gp))
    [2, 3, 4]
    >>> dispersion(fp, gp)
    4
    >>> sorted(dispersionset(gp, fp))
    []
    >>> dispersion(gp, fp)
    -oo

    Computing the dispersion also works over field extensions:

    >>> from sympy import sqrt
    >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
    >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
    >>> sorted(dispersionset(fp, gp))
    [2]
    >>> sorted(dispersionset(gp, fp))
    [1, 4]

    We can even perform the computations for polynomials
    having symbolic coefficients:

    >>> from sympy.abc import a
    >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
    >>> sorted(dispersionset(fp))
    [0, 1]

    See Also
    ========

    dispersion

    References
    ==========

    .. [1] [ManWright94]_
    .. [2] [Koepf98]_
    .. [3] [Abramov71]_
    .. [4] [Man93]_
    NFTz!Polynomials need to be univariatez(Polynomials must have the same generatoré   r   )r   Úis_univariateÚ
ValueErrorÚgenÚdegreeÚfactor_listÚsetÚLCÚis_zeroÚcoeff_monomialr   Ú
is_integerÚshiftÚadd)ÚpÚqÚgensÚargsÚsamer   ÚfpÚfqÚJÚsÚunusedÚtÚmÚnÚanÚbnÚanm1Úbnm1Úalpha© r#   új/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/polys/dispersion.pyÚdispersionset   sJ   I
ër%   c                 O   s2   t | |g|¢R i |¤Ž}|stj}|S t|ƒ}|S )aÀ  Compute the *dispersion* of polynomials.

    For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
    and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as:

    .. math::
        \operatorname{dis}(f, g)
        & := \max\{ J(f,g) \cup \{0\} \} \\
        &  = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}

    and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`.
    Note that we make the definition `\max\{\} := -\infty`.

    Examples
    ========

    >>> from sympy import poly
    >>> from sympy.polys.dispersion import dispersion, dispersionset
    >>> from sympy.abc import x

    Dispersion set and dispersion of a simple polynomial:

    >>> fp = poly((x - 3)*(x + 3), x)
    >>> sorted(dispersionset(fp))
    [0, 6]
    >>> dispersion(fp)
    6

    Note that the definition of the dispersion is not symmetric:

    >>> fp = poly(x**4 - 3*x**2 + 1, x)
    >>> gp = fp.shift(-3)
    >>> sorted(dispersionset(fp, gp))
    [2, 3, 4]
    >>> dispersion(fp, gp)
    4
    >>> sorted(dispersionset(gp, fp))
    []
    >>> dispersion(gp, fp)
    -oo

    The maximum of an empty set is defined to be `-\infty`
    as seen in this example.

    Computing the dispersion also works over field extensions:

    >>> from sympy import sqrt
    >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
    >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
    >>> sorted(dispersionset(fp, gp))
    [2]
    >>> sorted(dispersionset(gp, fp))
    [1, 4]

    We can even perform the computations for polynomials
    having symbolic coefficients:

    >>> from sympy.abc import a
    >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
    >>> sorted(dispersionset(fp))
    [0, 1]

    See Also
    ========

    dispersionset

    References
    ==========

    .. [1] [ManWright94]_
    .. [2] [Koepf98]_
    .. [3] [Abramov71]_
    .. [4] [Man93]_
    )r%   r   ÚNegativeInfinityÚmax)r   r   r   r   r   Újr#   r#   r$   Ú
dispersion‚   s   Lÿr)   )N)Ú
sympy.corer   Úsympy.polysr   r%   r)   r#   r#   r#   r$   Ú<module>   s    
}