o
    ohG                     @   s   d dl mZ d dlmZmZmZ d dlmZ d dl	m
Z
 d dlmZmZ G dd dZG dd	 d	Zd
d Zd!ddZdd Zdd Zdd Zdd Zdd Zdd Zdd Zd"dd ZdS )#    )_randint)gcdinvertsqrt)_sqrt_mod_prime_power)isprime)logr   c                   @   s   e Zd ZdddZdd ZdS )SievePolynomial Nc                 C   s   || _ || _|| _dS )a  This class denotes the seive polynomial.
        If ``g(x) = (a*x + b)**2 - N``. `g(x)` can be expanded
        to ``a*x**2 + 2*a*b*x + b**2 - N``, so the coefficient
        is stored in the form `[a**2, 2*a*b, b**2 - N]`. This
        ensures faster `eval` method because we dont have to
        perform `a**2, 2*a*b, b**2` every time we call the
        `eval` method. As multiplication is more expensive
        than addition, by using modified_coefficient we get
        a faster seiving process.

        Parameters
        ==========

        modified_coeff : modified_coefficient of sieve polynomial
        a : parameter of the sieve polynomial
        b : parameter of the sieve polynomial
        N)modified_coeffab)selfr   r   r   r
   r
   d/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/ntheory/qs.py__init__	   s   
zSievePolynomial.__init__c                 C   s$   d}| j D ]
}||9 }||7 }q|S )z
        Compute the value of the sieve polynomial at point x.

        Parameters
        ==========

        x : Integer parameter for sieve polynomial
        r   )r   )r   xanscoeffr
   r
   r   eval   s
   	

zSievePolynomial.eval)r
   NN)__name__
__module____qualname__r   r   r
   r
   r
   r   r	      s    
r	   c                   @   s   e Zd ZdZdd ZdS )FactorBaseElemz7This class stores an element of the `factor_base`.
    c                 C   s.   || _ || _|| _d| _d| _d| _d| _dS )z
        Initialization of factor_base_elem.

        Parameters
        ==========

        prime : prime number of the factor_base
        tmem_p : Integer square root of x**2 = n mod prime
        log_p : Compute Natural Logarithm of the prime
        N)primetmem_plog_psoln1soln2a_invb_ainv)r   r   r   r   r
   r
   r   r   2   s   
zFactorBaseElem.__init__N)r   r   r   __doc__r   r
   r
   r
   r   r   /   s    r   c           	      C   s   ddl m} g }d\}}|d| D ]C}t||d d |dkrU|dkr.|du r.t|d }|dkr<|du r<t|d }t||dd }tt|d	 }|t	||| q|||fS )
a  Generate `factor_base` for Quadratic Sieve. The `factor_base`
    consists of all the points whose ``legendre_symbol(n, p) == 1``
    and ``p < num_primes``. Along with the prime `factor_base` also stores
    natural logarithm of prime and the residue n modulo p.
    It also returns the of primes numbers in the `factor_base` which are
    close to 1000 and 5000.

    Parameters
    ==========

    prime_bound : upper prime bound of the factor_base
    n : integer to be factored
    r   )sieveNN      i  Ni     )
sympy.ntheory.generater!   
primerangepowlenr   roundr   appendr   )	prime_boundnr!   factor_baseidx_1000idx_5000r   residuer   r
   r
   r   _generate_factor_baseF   s   
r2   Nc                    s  t |}td|  | }d\}}	}
|du rdn|}|du r#t|d n|}tdD ]M}d}g }||k r\d}|dks=||v rJ|||}|dks=||v s=|| j}||9 }|| ||k s3|| }|
du spt|d t|
d k rv|}	|}|}
q)|}|	}g }|D ](}|| j}|| jt|| | | }||d kr|| }||| |  qt	|}t
|| d| | || |  g||}|D ]4 | j dkrqt| j _ fdd|D  _ j j|   j  _ j j |   j  _q||fS )	ag  This step is the initialization of the 1st sieve polynomial.
    Here `a` is selected as a product of several primes of the factor_base
    such that `a` is about to ``sqrt(2*N) / M``. Other initial values of
    factor_base elem are also initialized which includes a_inv, b_ainv, soln1,
    soln2 which are used when the sieve polynomial is changed. The b_ainv
    is required for fast polynomial change as we do not have to calculate
    `2*b*invert(a, prime)` every time.
    We also ensure that the `factor_base` primes which make `a` are between
    1000 and 5000.

    Parameters
    ==========

    N : Number to be factored
    M : sieve interval
    factor_base : factor_base primes
    idx_1000 : index of prime number in the factor_base near 1000
    idx_5000 : index of prime number in the factor_base near to 5000
    seed : Generate pseudoprime numbers
    r$   )NNNNr   r#   2   c                    s    g | ]}d |  j   j qS )r$   )r   r   ).0b_elemfbr
   r   
<listcomp>   s     z0_initialize_first_polynomial.<locals>.<listcomp>)r   r   r)   ranger   r+   absr   r   sumr	   r   r   r   r   )NMr.   r/   r0   seedrandint
approx_valbest_abest_q
best_ratiostartend_r   qrand_ppratioBvalq_lgammar   gr
   r6   r   _initialize_first_polynomialc   sT   



 
&rP   c                 C   s  ddl m} d}|}|d dkr|d7 }|d }|d dks||d|  d dkr-d}nd}|jd| ||d    }	|j}
t|
|
 d|
 |	 |	|	 |  g|
|	}|D ]*}|
|j dkr^qT|j||j|d    |j |_|j||j|d    |j |_qT|S )a  Initialization stage of ith poly. After we finish sieving 1`st polynomial
    here we quickly change to the next polynomial from which we will again
    start sieving. Suppose we generated ith sieve polynomial and now we
    want to generate (i + 1)th polynomial, where ``1 <= i <= 2**(j - 1) - 1``
    where `j` is the number of prime factors of the coefficient `a`
    then this function can be used to go to the next polynomial. If
    ``i = 2**(j - 1) - 1`` then go to _initialize_first_polynomial stage.

    Parameters
    ==========

    N : number to be factored
    factor_base : factor_base primes
    i : integer denoting ith polynomial
    g : (i - 1)th polynomial
    B : array that stores a//q_l*gamma
    r   )ceilingr#   r$   )	#sympy.functions.elementary.integersrQ   r   r   r	   r   r   r   r   )r<   r.   irO   rK   rQ   vjneg_powr   r   r7   r
   r
   r   _initialize_ith_poly   s&   & "rX   c                 C   s   dgd|  d  }|D ]D}|j du rqt| |j  |j d|  |jD ]}||  |j7  < q"|jdkr4qt| |j |j d|  |jD ]}||  |j7  < qCq|S )a  Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
    that does not divide the coefficient `a` we add log_p over the sieve_array
    such that ``-M <= soln1 + i*p <=  M`` and ``-M <= soln2 + i*p <=  M`` where `i`
    is an integer. When p = 2 then log_p is only added using
    ``-M <= soln1 + i*p <=  M``.

    Parameters
    ==========

    M : sieve interval
    factor_base : factor_base primes
    r   r$   r#   N)r   r9   r   r   r   )r=   r.   sieve_arrayfactoridxr
   r
   r   _gen_sieve_array   s   
"
"r\   c                 C   s   g }| dk r| d | d9 } n| d |D ]/}| |j dkr&| d qd}| |j dkr?|d7 }| |j } | |j dks/| |d  q| dkrO|dfS t| rW| dfS dS )ab  Here we check that if `num` is a smooth number or not. If `a` is a smooth
    number then it returns a vector of prime exponents modulo 2. For example
    if a = 2 * 5**2 * 7**3 and the factor base contains {2, 3, 5, 7} then
    `a` is a smooth number and this function returns ([1, 0, 0, 1], True). If
    `a` is a partial relation which means that `a` a has one prime factor
    greater than the `factor_base` then it returns `(a, False)` which denotes `a`
    is a partial relation.

    Parameters
    ==========

    a : integer whose smootheness is to be checked
    factor_base : factor_base primes
    r   r#   rR   r$   TFr"   )r+   r   r   )numr.   vecrZ   
factor_expr
   r
   r   _check_smoothness   s(   




r`   c              	   C   s:  t | }t|| d | }g }	t }
d|d j }t|D ]z\}}||k r'q|| }||}t||\}}|du r<q|j| |j }|du r|}||krOq||vrZ||f||< q|| \}}|	| zt
|| }W n tyz   |
| Y qw || | }|| ||  }t||\}}|	|||f q|	|
fS )a)  Trial division stage. Here we trial divide the values generetated
    by sieve_poly in the sieve interval and if it is a smooth number then
    it is stored in `smooth_relations`. Moreover, if we find two partial relations
    with same large prime then they are combined to form a smooth relation.
    First we iterate over sieve array and look for values which are greater
    than accumulated_val, as these values have a high chance of being smooth
    number. Then using these values we find smooth relations.
    In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations
    with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN``
    to form a smooth relation.

    Parameters
    ==========

    N : Number to be factored
    M : sieve interval
    factor_base : factor_base primes
    sieve_array : stores log_p values
    sieve_poly : polynomial from which we find smooth relations
    partial_relations : stores partial relations with one large prime
    ERROR_TERM : error term for accumulated_val
    r%      rR   NF)isqrtr   setr   	enumerater   r`   r   r   popr   ZeroDivisionErroraddr+   )r<   r=   r.   rY   
sieve_polypartial_relations
ERROR_TERMsqrt_naccumulated_valsmooth_relationsproper_factorpartial_relation_upper_boundr[   rL   r   rU   r^   	is_smoothularge_primeu_prevv_prevlarge_prime_invr
   r
   r   _trial_division_stage  sD   


rv   c                 C   s    g }| D ]	}| |d  q|S )z|Build a 2D matrix from smooth relations.

    Parameters
    ==========

    smooth_relations : Stores smooth relations
    r$   )r+   )rm   matrix
s_relationr
   r
   r   _build_matrixR  s   ry   c                 C   s   ddl }|| }t|}t|d }dg| }t|D ]D}t|D ]}|| | dkr. nq"d||< t|D ](}||kr>q7|| | dkr_t|D ]}	||	 | ||	 |  d ||	 |< qJq7qg }
t|D ]\}}|dkrx|
|| |g qg|
||fS )a  Fast gaussian reduction for modulo 2 matrix.

    Parameters
    ==========

    A : Matrix

    Examples
    ========

    >>> from sympy.ntheory.qs import _gauss_mod_2
    >>> _gauss_mod_2([[0, 1, 1], [1, 0, 1], [0, 1, 0], [1, 1, 1]])
    ([[[1, 0, 1], 3]],
     [True, True, True, False],
     [[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]])

    Reference
    ==========

    .. [1] A fast algorithm for gaussian elimination over GF(2) and
    its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchiger   NFr#   Tr$   )copydeepcopyr)   r9   rd   r+   )Arz   rw   rowcolmarkcrc1r2dependent_rowr[   rL   r
   r
   r   _gauss_mod_2`  s2   

&
r   c                 C   s   | | d }|| d g}|| d g}| | d }	t |	D ]3\}
}|dkrQtt|D ]$}|| |
 dkrP|| dkrP||| d  ||| d   nq,qd}d}|D ]}||9 }qX|D ]}||9 }qat|}t|| |S )a  Finds proper factor of N. Here, transform the dependent rows as a
    combination of independent rows of the gauss_matrix to form the desired
    relation of the form ``X**2 = Y**2 modN``. After obtaining the desired relation
    we obtain a proper factor of N by `gcd(X - Y, N)`.

    Parameters
    ==========

    dependent_rows : denoted dependent rows in the reduced matrix form
    mark : boolean array to denoted dependent and independent rows
    gauss_matrix : Reduced form of the smooth relations matrix
    index : denoted the index of the dependent_rows
    smooth_relations : Smooth relations vectors matrix
    N : Number to be factored
    r#   r   T)rd   r9   r)   r+   rb   r   )dependent_rowsr   gauss_matrixindexrm   r<   idx_in_smoothindependent_uindependent_vdept_rowr[   rL   r}   rq   rU   rT   r
   r
   r   _find_factor  s(   

r        c                 C   sv  |d9 }t || \}}}g }d}	i }
t }dt| d }	 |	dkr-t| ||||\}}nt| ||	||}|	d7 }	|	dt|d  krEd}	t||}t| |||||
|\}}||7 }||O }t|t|| krinqt|}t|\}}}| }t	t|D ];}t
|||||| }|dkr|| k r|| || dkr|| }|| dkst|r||  |S |dkr |S q}|S )a  Performs factorization using Self-Initializing Quadratic Sieve.
    In SIQS, let N be a number to be factored, and this N should not be a
    perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and
    ``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N.
    In order to find these integers X and Y we try to find relations of form
    t**2 = u modN where u is a product of small primes. If we have enough of
    these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that
    the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``.

    Here, several optimizations are done like using multiple polynomials for
    sieving, fast changing between polynomials and using partial relations.
    The use of partial relations can speeds up the factoring by 2 times.

    Parameters
    ==========

    N : Number to be Factored
    prime_bound : upper bound for primes in the factor base
    M : Sieve Interval
    ERROR_TERM : Error term for checking smoothness
    threshold : Extra smooth relations for factorization
    seed : generate pseudo prime numbers

    Examples
    ========

    >>> from sympy.ntheory import qs
    >>> qs(25645121643901801, 2000, 10000)
    {5394769, 4753701529}
    >>> qs(9804659461513846513, 2000, 10000)
    {4641991, 2112166839943}

    References
    ==========

    .. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf
    .. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve
    r%   r      d   Tr#   r$   )r2   rc   r)   rP   rX   r\   rv   ry   r   r9   r   rg   r   )r<   r,   r=   rj   r>   r/   r0   r.   rm   ith_polyri   rn   	thresholdith_sieve_polyB_arrayrY   s_relp_frw   r   r   r   N_copyr   rZ   r
   r
   r   qs  sP   '


 r   )N)r   r   )sympy.core.randomr   sympy.external.gmpyr   r   r   rb   sympy.ntheory.residue_ntheoryr   sympy.ntheoryr   mathr   r	   r   r2   rP   rX   r\   r`   rv   ry   r   r   r   r
   r
   r
   r   <module>   s"    '
F(&@-(