o
    oÇhÑ  ã                   @   s¨   d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZ G dd„ deƒZd	d
„ ZG dd„ deƒZdd„ Zd dlmZmZ d dlmZ dd„ Zeed< dS )é    )ÚBasic)ÚExpr)ÚS)Úsympify)ÚNonSquareMatrixError)Ú
MatrixBasec                   @   s<   e Zd ZdZdZdd„ Zedd„ ƒZedd„ ƒZd	d
„ Z	dS )ÚDeterminanta  Matrix Determinant

    Represents the determinant of a matrix expression.

    Examples
    ========

    >>> from sympy import MatrixSymbol, Determinant, eye
    >>> A = MatrixSymbol('A', 3, 3)
    >>> Determinant(A)
    Determinant(A)
    >>> Determinant(eye(3)).doit()
    1
    Tc                 C   s<   t |ƒ}|jstdt|ƒ ƒ‚|jdu rtdƒ‚t | |¡S )Nz&Input to Determinant, %s, not a matrixFzDet of a non-square matrix)r   Ú	is_MatrixÚ	TypeErrorÚstrÚ	is_squarer   r   Ú__new__©ÚclsÚmat© r   úz/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/matrices/expressions/determinant.pyr      s   
zDeterminant.__new__c                 C   ó
   | j d S ©Nr   ©Úargs©Úselfr   r   r   Úarg$   ó   
zDeterminant.argc                 C   s
   | j jjS ©N)r   ÚkindÚelement_kindr   r   r   r   r   (   r   zDeterminant.kindc                 K   s:   | j }| dd¡r|jdi |¤Ž}| ¡ }|d ur|S | S )NÚdeepTr   )r   ÚgetÚdoitÚ_eval_determinant)r   Úhintsr   Úresultr   r   r   r    ,   s   zDeterminant.doitN)
Ú__name__Ú
__module__Ú__qualname__Ú__doc__Úis_commutativer   Úpropertyr   r   r    r   r   r   r   r   	   s    


r   c                 C   ó   t | ƒ ¡ S )zÅ Matrix Determinant

    Examples
    ========

    >>> from sympy import MatrixSymbol, det, eye
    >>> A = MatrixSymbol('A', 3, 3)
    >>> det(A)
    Determinant(A)
    >>> det(eye(3))
    1
    )r   r    ©Úmatexprr   r   r   Údet8   s   r-   c                   @   s.   e Zd ZdZdd„ Zedd„ ƒZd
dd„Zd	S )Ú	Permanenta  Matrix Permanent

    Represents the permanent of a matrix expression.

    Examples
    ========

    >>> from sympy import MatrixSymbol, Permanent, ones
    >>> A = MatrixSymbol('A', 3, 3)
    >>> Permanent(A)
    Permanent(A)
    >>> Permanent(ones(3, 3)).doit()
    6
    c                 C   s*   t |ƒ}|jstdt|ƒ ƒ‚t | |¡S )Nz$Input to Permanent, %s, not a matrix)r   r	   r
   r   r   r   r   r   r   r   r   X   s   zPermanent.__new__c                 C   r   r   r   r   r   r   r   r   _   r   zPermanent.argFc                 K   s   t | jtƒr| j ¡ S | S r   )Ú
isinstancer   r   Úper)r   Úexpandr"   r   r   r   r    c   s   
zPermanent.doitN)F)r$   r%   r&   r'   r   r)   r   r    r   r   r   r   r.   H   s    
r.   c                 C   r*   )a   Matrix Permanent

    Examples
    ========

    >>> from sympy import MatrixSymbol, Matrix, per, ones
    >>> A = MatrixSymbol('A', 3, 3)
    >>> per(A)
    Permanent(A)
    >>> per(ones(5, 5))
    120
    >>> M = Matrix([1, 2, 5])
    >>> per(M)
    8
    )r.   r    r+   r   r   r   r0   i   s   r0   )ÚaskÚQ)Úhandlers_dictc                 C   sL   t t | j¡|ƒrtjS t t | j¡|ƒrtjS t t | j¡|ƒr$tjS | S )zÜ
    >>> from sympy import MatrixSymbol, Q, assuming, refine, det
    >>> X = MatrixSymbol('X', 2, 2)
    >>> det(X)
    Determinant(X)
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(det(X)))
    1
    )	r2   r3   Ú
orthogonalr   r   ÚOneÚsingularÚZeroÚunit_triangular)ÚexprÚassumptionsr   r   r   Úrefine_Determinant€   s   
r<   N)Úsympy.core.basicr   Úsympy.core.exprr   Úsympy.core.singletonr   Úsympy.core.sympifyr   Úsympy.matrices.exceptionsr   Úsympy.matrices.matrixbaser   r   r-   r.   r0   Úsympy.assumptions.askr2   r3   Úsympy.assumptions.refiner4   r<   r   r   r   r   Ú<module>   s    /!