o
    oh                     @   sn   d Z ddlmZ ddlmZ ddlmZ ddlmZ	m
ZmZ dddZdd	d
ZdddZ
dddddZdS )z,Functions returning normal forms of matrices    )ZZ)Poly)DomainMatrix)smith_normal_forminvariant_factorshermite_normal_formNc                 C   sB   t | dd}| dd } t| }|p|}|dur||}|S )zConvert Matrix to DomainMatrixringNc                 S   s   t | tr	|  S | S N)
isinstancer   as_expr)e r   n/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/matrices/normalforms.py<lambda>   s    z_to_domain.<locals>.<lambda>)getattr	applyfuncr   from_Matrix
convert_to)mdomainr   dMr   r   r   
_to_domain   s   

r   c                 C   s   t | |}t| S )a  
    Return the Smith Normal Form of a matrix `m` over the ring `domain`.
    This will only work if the ring is a principal ideal domain.

    Examples
    ========

    >>> from sympy import Matrix, ZZ
    >>> from sympy.matrices.normalforms import smith_normal_form
    >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
    >>> print(smith_normal_form(m, domain=ZZ))
    Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])

    )r   _snf	to_Matrix)r   r   r   r   r   r   r      s   
r   c                    sf   t | |t}tfdd|D }t| dr1| jjr1| j  fddtfdd|D }|S )a9  
    Return the tuple of abelian invariants for a matrix `m`
    (as in the Smith-Normal form)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
    .. [2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf

    c                 3   s    | ]	} j |V  qd S r	   )r   to_sympy.0f)r   r   r   	<genexpr><   s    z$invariant_factors.<locals>.<genexpr>r   c                    s   t |  j jdS )N)r   )r   symbolsr   )r   )Kr   r   r   A   s    z#invariant_factors.<locals>.<lambda>c                 3   s    | ]} |V  qd S r	   r   r   )to_polyr   r   r   B   s    )r   _invftuplehasattrr   is_PolynomialRing)r   r   factorsr   )r    r   r!   r   r   .   s   

r   FD
check_rankc                C   s2   |durt |st t|}t| j||d S )a  
    Compute the Hermite Normal Form of a Matrix *A* of integers.

    Examples
    ========

    >>> from sympy import Matrix
    >>> from sympy.matrices.normalforms import hermite_normal_form
    >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
    >>> print(hermite_normal_form(m))
    Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])

    Parameters
    ==========

    A : $m \times n$ ``Matrix`` of integers.

    D : int, optional
        Let $W$ be the HNF of *A*. If known in advance, a positive integer *D*
        being any multiple of $\det(W)$ may be provided. In this case, if *A*
        also has rank $m$, then we may use an alternative algorithm that works
        mod *D* in order to prevent coefficient explosion.

    check_rank : boolean, optional (default=False)
        The basic assumption is that, if you pass a value for *D*, then
        you already believe that *A* has rank $m$, so we do not waste time
        checking it for you. If you do want this to be checked (and the
        ordinary, non-modulo *D* algorithm to be used if the check fails), then
        set *check_rank* to ``True``.

    Returns
    =======

    ``Matrix``
        The HNF of matrix *A*.

    Raises
    ======

    DMDomainError
        If the domain of the matrix is not :ref:`ZZ`.

    DMShapeError
        If the mod *D* algorithm is used but the matrix has more rows than
        columns.

    References
    ==========

    .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
       (See Algorithms 2.4.5 and 2.4.8.)

    Nr'   )r   of_typeint_hnf_repr   )Ar(   r)   r   r   r   r   F   s   7r   r	   )__doc__sympy.polys.domains.integerringr   sympy.polys.polytoolsr   sympy.polys.matricesr    sympy.polys.matrices.normalformsr   r   r   r"   r   r,   r   r   r   r   r   <module>   s    


