o
    oh                     @   s  d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZmZ d dlmZmZ d dlmZmZmZ d d	lmZ d d
lmZmZmZ d dlmZ d dlmZ d dlm Z m!Z!m"Z"m#Z# d dl$m%Z% d dl&m'Z'm(Z( d dl)m*Z*m+Z+m,Z, d dl-m.Z.m/Z/m0Z0m1Z1m2Z2 d dl3m4Z4m5Z5m6Z6 d dl7m8Z8 d dl9m:Z: d dl;m<Z<m=Z= G dd deZ>G dd de>Z?G dd de>Z@G dd de>ZAG dd de>ZBG d d! d!e>ZCG d"d# d#e>ZDd$d% ZEG d&d' d'e>ZFd(d) ZGd*d+ ZHG d,d- d-eFZIG d.d/ d/eFZJG d0d1 d1eFZKG d2d3 d3eKZLG d4d5 d5eKZMdGd8d9ZNG d:d; d;eZOG d<d= d=eOZPG d>d? d?eOZQG d@dA dAeOZRG dBdC dCeOZSG dDdE dEeZTdFS )H    wraps)S)Add)cacheit)Expr)FunctionArgumentIndexError_mexpand)fuzzy_or	fuzzy_not)RationalpiI)Pow)Dummyuniquely_named_symbolWild)sympify)	factorial)sincoscsccot)ceiling)explog)cbrtsqrtroot)Absreim
polar_lift
unpolarify)gammadigamma
uppergamma)hyper)spherical_bessel_fn)mpworkprecc                   @   s^   e Zd ZdZedd Zedd Zedd Zdd	d
Z	dd Z
dd Zdd Zdd ZdS )
BesselBasea  
    Abstract base class for Bessel-type functions.

    This class is meant to reduce code duplication.
    All Bessel-type functions can 1) be differentiated, with the derivatives
    expressed in terms of similar functions, and 2) be rewritten in terms
    of other Bessel-type functions.

    Here, Bessel-type functions are assumed to have one complex parameter.

    To use this base class, define class attributes ``_a`` and ``_b`` such that
    ``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``.

    c                 C   
   | j d S )z( The order of the Bessel-type function. r   argsself r2   r/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/functions/special/bessel.pyorder4      
zBesselBase.orderc                 C   r-   )z+ The argument of the Bessel-type function.    r.   r0   r2   r2   r3   argument9   r5   zBesselBase.argumentc                 C   s   d S Nr2   clsnuzr2   r2   r3   eval>   s   zBesselBase.eval   c                 C   sN   |dkr	t | || jd | | jd | j | jd | | jd | j  S Nr>   r6   )r	   _b	__class__r4   r7   _ar1   argindexr2   r2   r3   fdiffB   s
   
zBesselBase.fdiffc                 C   s*   | j }|jdu r| | j | S d S NF)r7   is_extended_negativerA   r4   	conjugater1   r<   r2   r2   r3   _eval_conjugateH   s   
zBesselBase._eval_conjugatec                 C   sx   | j | j}}||rdS |||sd S |||}|jr2t| ttt	t
ttfs-|js2t|jS tt|j|jgS rF   )r4   r7   has_eval_is_meromorphicsubs
is_integer
isinstancebesseljbesselihn1hn2jnynis_zeror   is_infiniter   )r1   xar;   r<   z0r2   r2   r3   rL   M   s   

zBesselBase._eval_is_meromorphicc                 K   s   | j | j| j}}}|jr_|d jr7| j | j ||d |  d| j |d  ||d |  |  S |d jr_d| j |d  ||d |  | | j| j ||d |   S | S Nr6   r>   )	r4   r7   rA   is_realis_positiverB   r@   _eval_expand_funcis_negative)r1   hintsr;   r<   fr2   r2   r3   r^   Z   s   
&
&zBesselBase._eval_expand_funcc                 K   s   ddl m} || S )Nr   )
besselsimp)sympy.simplify.simplifyrb   )r1   kwargsrb   r2   r2   r3   _eval_simplifye   s   zBesselBase._eval_simplifyNr>   )__name__
__module____qualname____doc__propertyr4   r7   classmethodr=   rE   rJ   rL   r^   re   r2   r2   r2   r3   r,   $   s    



r,   c                       h   e Zd ZdZejZejZedd Z	dd Z
dd Zdd	 Zd fdd	Zdd Zd fdd	Z  ZS )rP   a4  
    Bessel function of the first kind.

    Explanation
    ===========

    The Bessel $J$ function of order $\nu$ is defined to be the function
    satisfying Bessel's differential equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
        + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0,

    with Laurent expansion

    .. math ::
        J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right),

    if $\nu$ is not a negative integer. If $\nu=-n \in \mathbb{Z}_{<0}$
    *is* a negative integer, then the definition is

    .. math ::
        J_{-n}(z) = (-1)^n J_n(z).

    Examples
    ========

    Create a Bessel function object:

    >>> from sympy import besselj, jn
    >>> from sympy.abc import z, n
    >>> b = besselj(n, z)

    Differentiate it:

    >>> b.diff(z)
    besselj(n - 1, z)/2 - besselj(n + 1, z)/2

    Rewrite in terms of spherical Bessel functions:

    >>> b.rewrite(jn)
    sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)

    Access the parameter and argument:

    >>> b.order
    n
    >>> b.argument
    z

    See Also
    ========

    bessely, besseli, besselk

    References
    ==========

    .. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9",
           Handbook of Mathematical Functions with Formulas, Graphs, and
           Mathematical Tables
    .. [2] Luke, Y. L. (1969), The Special Functions and Their
           Approximations, Volume 1
    .. [3] https://en.wikipedia.org/wiki/Bessel_function
    .. [4] https://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/

    c                 C   sR  |j r,|j r	tjS |jr|j du st|jrtjS t|jr&|jdur&tjS |j	r,tj
S |tjtjfv r7tjS | rK|| | |   t||  S |jrn| r^tj|  t| | S |t}|rnt| t|| S |jrt|}||kr~t||S n| \}}|dkrtd| t | t t|| S t|}||krt||S d S )NFTr   r>   )rV   r   OnerN   r!   r]   Zeror_   ComplexInfinityis_imaginaryNaNInfinityNegativeInfinitycould_extract_minus_signrP   NegativeOneextract_multiplicativelyr   rQ   r$   extract_branch_factorr   r   r:   r;   r<   newznnnur2   r2   r3   r=      s>    

"
zbesselj.evalc                 K   s(   t tt | d t|tt |  S Nr>   )r   r   r   rQ   r#   r1   r;   r<   rd   r2   r2   r3   _eval_rewrite_as_besseli      (z besselj._eval_rewrite_as_besselic                 K   s<   |j du rtt| t| | tt| t||  S d S rF   )rN   r   r   besselyr   r~   r2   r2   r3   _eval_rewrite_as_bessely      
.z besselj._eval_rewrite_as_besselyc                 K   "   t d| t t|tj | j S r}   )r   r   rT   r   Halfr7   r~   r2   r2   r3   _eval_rewrite_as_jn      "zbesselj._eval_rewrite_as_jnNr   c           
         s   | j \}}z||}W n ty   |  Y S w ||\}}|jr0|| d| t|d   S |jr^|dkr9dn|}|||  }	|	js\tdt|t	d| d  d   tt	|  S | S t
t| |||S )Nr>   r6   r      )r/   as_leading_termNotImplementedErroras_coeff_exponentr]   r%   r_   r   r   r   superrP   _eval_as_leading_term
r1   rX   logxcdirr;   r<   argcesignrA   r2   r3   r      s    
0zbesselj._eval_as_leading_termc                 C   "   | j \}}|jr|jrdS d S d S NTr/   rN   is_extended_realr1   r;   r<   r2   r2   r3   _eval_is_extended_real      
zbesselj._eval_is_extended_realc              	      s"  ddl m} | j\}}z	||\}}	W n ttfy!   |  Y S w |	jrt||	 }
||| |}|d ||||	 }|t
ju rE|S t|d | 	 }|| t|d  }|g}td|
d d D ]}|| |||   9 }t|| 	 }|| qet| | S tt| ||||S Nr   Orderr>   r6   )sympy.series.orderr   r/   leadterm
ValueErrorr   r]   r   _eval_nseriesremoveOr   ro   r
   r%   rangeappendr   r   rP   r1   rX   r{   r   r   r   r;   r<   _r   newnorttermskr   r2   r3   r      s,   

zbesselj._eval_nseriesNr   r   )rg   rh   ri   rj   r   rn   rB   r@   rl   r=   r   r   r   r   r   r   __classcell__r2   r2   r   r3   rP   j   s    D
#rP   c                       rm   )r   a`  
    Bessel function of the second kind.

    Explanation
    ===========

    The Bessel $Y$ function of order $\nu$ is defined as

    .. math ::
        Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu)
                                            - J_{-\mu}(z)}{\sin(\pi \mu)},

    where $J_\mu(z)$ is the Bessel function of the first kind.

    It is a solution to Bessel's equation, and linearly independent from
    $J_\nu$.

    Examples
    ========

    >>> from sympy import bessely, yn
    >>> from sympy.abc import z, n
    >>> b = bessely(n, z)
    >>> b.diff(z)
    bessely(n - 1, z)/2 - bessely(n + 1, z)/2
    >>> b.rewrite(yn)
    sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)

    See Also
    ========

    besselj, besseli, besselk

    References
    ==========

    .. [1] https://functions.wolfram.com/Bessel-TypeFunctions/BesselY/

    c                 C   s   |j r|j r	tjS t|j du rtjS t|j rtjS |tjtjfv r&tjS |ttj kr<t	tt
 |d  d tj S |ttj krSt	t t
 |d  d tj S |jrf| rhtj|  t| | S d S d S )NFr6   r>   )rV   r   rt   r!   rp   rr   rs   ro   r   r   r   rN   ru   rv   r   r9   r2   r2   r3   r=   F  s$   
 zbessely.evalc                 K   s<   |j du rtt| tt| t|| t| |  S d S rF   )rN   r   r   r   rP   r~   r2   r2   r3   _eval_rewrite_as_besseljZ  r   z bessely._eval_rewrite_as_besseljc                 K      | j | j }|r|tS d S r8   )r   r/   rewriterQ   r1   r;   r<   rd   ajr2   r2   r3   r   ^     
z bessely._eval_rewrite_as_besselic                 K   r   r}   )r   r   rU   r   r   r7   r~   r2   r2   r3   _eval_rewrite_as_ync  r   zbessely._eval_rewrite_as_ynNr   c                    sx  | j \}}z||}W n ty   |  Y S w ||\}}|jrkdt t|d  t|| }	|jrD|d |   t|d  t nt	j
}
|d |  tt|  t|d t	j  }t|	|
|g j||d}|S |jr|dkrtdn|}|||  }|jstdtt| d | td   dtt| d | td   d|    td|  tt S | S tt| |||S )Nr>   r6   r   r   r         )r/   r   r   r   r]   r   r   rP   r   r   ro   r&   
EulerGammar   r_   r   r   r   r   r   r   )r1   rX   r   r   r;   r<   r   r   r   term_oneterm_two
term_threer   r   r2   r3   r   f  s(   
,,bzbessely._eval_as_leading_termc                 C   r   r   r/   rN   r]   r   r2   r2   r3   r     r   zbessely._eval_is_extended_realc              	      s.  ddl m} | j\}}z	||\}}	W n ttfy!   |  Y S w |	jr|jrt||	 }
t	||}dt
 t|d  | ||||}g g }}||| |}|d |||| }|tju rf|S t|d |  }|tjkr||  t|d  t
 }|| td|D ]'}|| | }|tjkr||| 9 }n||| 9 }t||  }|| q|| t
t|  }|t|d tj  }|| td|
d d D ]*}|| |||   9 }t||  }|t|| d t|d   }|| q|t|  t|  S tt| ||||S r   )r   r   r/   r   r   r   r]   rN   r   rP   r   r   r   r   r   ro   r
   r   r   r   r&   r   r   r   r   r1   rX   r{   r   r   r   r;   r<   r   r   r   bnrY   br   r   r   r   r   r   denompr   r2   r3   r     sJ   

$





 zbessely._eval_nseriesr   r   )rg   rh   ri   rj   r   rn   rB   r@   rl   r=   r   r   r   r   r   r   r   r2   r2   r   r3   r     s    (
r   c                       sj   e Zd ZdZej ZejZedd Z	dd Z
dd Zdd	 Zd
d Zd fdd	Zd fdd	Z  ZS )rQ   a  
    Modified Bessel function of the first kind.

    Explanation
    ===========

    The Bessel $I$ function is a solution to the modified Bessel equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
        + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0.

    It can be defined as

    .. math ::
        I_\nu(z) = i^{-\nu} J_\nu(iz),

    where $J_\nu(z)$ is the Bessel function of the first kind.

    Examples
    ========

    >>> from sympy import besseli
    >>> from sympy.abc import z, n
    >>> besseli(n, z).diff(z)
    besseli(n - 1, z)/2 + besseli(n + 1, z)/2

    See Also
    ========

    besselj, bessely, besselk

    References
    ==========

    .. [1] https://functions.wolfram.com/Bessel-TypeFunctions/BesselI/

    c                 C   sv  |j r,|j r	tjS |jr|j du st|jrtjS t|jr&|jdur&tjS |j	r,tj
S t|tjtjfv r9tjS |tju rAtjS |tju rMd| tj S | ra|| | |   t||  S |jr| rnt| |S |t}|rt|  t||  S |jrt|}||krt||S n| \}}|dkrtd| t | t t|| S t|}||krt||S d S )NFTr   r>   )rV   r   rn   rN   r!   r]   ro   r_   rp   rq   rr   r"   rs   rt   ru   rQ   rw   r   rP   r$   rx   r   r   ry   r2   r2   r3   r=     sF   

 

"
zbesseli.evalc                 K   s(   t t t | d t|tt|  S r}   )r   r   r   rP   r#   r~   r2   r2   r3   r   	  r   z besseli._eval_rewrite_as_besseljc                 K   r   r8   r   r/   r   r   r   r2   r2   r3   r     r   z besseli._eval_rewrite_as_besselyc                 K   s   | j | j tS r8   )r   r/   r   rT   r~   r2   r2   r3   r     s   zbesseli._eval_rewrite_as_jnc                 C   r   r   r   r   r2   r2   r3   r     r   zbesseli._eval_is_extended_realNr   c           
         s   | j \}}z||}W n ty   |  Y S w ||\}}|jr0|| d| t|d   S |jrR|dkr9dn|}|||  }	|	jsPt|tdt	 |  S | S t
t| |||S Nr>   r6   r   )r/   r   r   r   r]   r%   r_   r   r   r   r   rQ   r   r   r   r2   r3   r     s    
zbesseli._eval_as_leading_termc              	      s   ddl m} | j\}}z	||\}}	W n ttfy!   |  Y S w |	jrt||	 }
||| |}|d ||||	 }|t
ju rE|S t|d | 	 }|| t|d  }|g}td|
d d D ]}|||||   9 }t|| 	 }|| qet| | S tt| ||||S r   )r   r   r/   r   r   r   r]   r   r   r   r   ro   r
   r%   r   r   r   r   rQ   r   r   r2   r3   r   .  s,   

zbesseli._eval_nseriesr   r   )rg   rh   ri   rj   r   rn   rB   r@   rl   r=   r   r   r   r   r   r   r   r2   r2   r   r3   rQ     s    '
'rQ   c                       sr   e Zd ZdZejZej Zedd Z	dd Z
dd Zdd	 Zd
d Zdd Zd fdd	Zd fdd	Z  ZS )besselka  
    Modified Bessel function of the second kind.

    Explanation
    ===========

    The Bessel $K$ function of order $\nu$ is defined as

    .. math ::
        K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2}
                   \frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)},

    where $I_\mu(z)$ is the modified Bessel function of the first kind.

    It is a solution of the modified Bessel equation, and linearly independent
    from $Y_\nu$.

    Examples
    ========

    >>> from sympy import besselk
    >>> from sympy.abc import z, n
    >>> besselk(n, z).diff(z)
    -besselk(n - 1, z)/2 - besselk(n + 1, z)/2

    See Also
    ========

    besselj, besseli, bessely

    References
    ==========

    .. [1] https://functions.wolfram.com/Bessel-TypeFunctions/BesselK/

    c                 C   sz   |j r|j r	tjS t|j du rtjS t|j rtjS |tjttj ttj fv r,tjS |j	r9|
 r;t| |S d S d S rF   )rV   r   rs   r!   rp   rr   r   rt   ro   rN   ru   r   r9   r2   r2   r3   r=   w  s   
zbesselk.evalc                 K   s8   |j du rttt|  t| |t||  d S d S )NFr>   )rN   r   r   rQ   r~   r2   r2   r3   r     s   
*z besselk._eval_rewrite_as_besselic                 K   r   r8   )r   r/   r   rP   )r1   r;   r<   rd   air2   r2   r3   r     r   z besselk._eval_rewrite_as_besseljc                 K   r   r8   r   r   r2   r2   r3   r     r   z besselk._eval_rewrite_as_besselyc                 K   r   r8   )r   r/   r   rU   )r1   r;   r<   rd   ayr2   r2   r3   r     r   zbesselk._eval_rewrite_as_ync                 C   r   r   r   r   r2   r2   r3   r     r   zbesselk._eval_is_extended_realNr   c                    s  | j \}}z||}W n ty   |  Y S w ||\}}|jrod|d  t|d  t|| }	|jrE|d |  t|d  d ntj	}
d| |d |  dt|  t
|d tj  }t|	|
|g j||d}|S |jrttt|  td|  S tt| |||S )Nr   r6   r>   r   )r/   r   r   r   r]   r   rQ   r   r   ro   r&   r   r   r_   r   r   r   r   r   r   )r1   rX   r   r   r;   r<   r   r   r   r   r   r   r   r2   r3   r     s    
"*2zbesselk._eval_as_leading_termc              	      s8  ddl m} | j\}}z	||\}}	W n ttfy!   |  Y S w |	jr|jrt||	 }
t	||}d|d  t
|d  | ||||}g g }}||| |}|d |||| }|tju rh|S t|d |  }|tjkr||  t|d  d }|| td|D ]'}|| | }|tjkr||| 9 }n||| 9 }t||  }|| q|| d|  dt|  }|t|d tj  }|| td|
d d D ])}|||||   9 }t||  }|t|| d t|d   }|| q|t|  t|  S tt| ||||S )Nr   r   r   r6   r>   )r   r   r/   r   r   r   r]   rN   r   rQ   r   r   r   r   ro   r
   r   r   r   r&   r   r   r   r   r   r   r2   r3   r     sJ   

(





 zbesselk._eval_nseriesr   r   )rg   rh   ri   rj   r   rn   rB   r@   rl   r=   r   r   r   r   r   r   r   r   r2   r2   r   r3   r   N  s    %
r   c                   @   $   e Zd ZdZejZejZdd ZdS )hankel1a  
    Hankel function of the first kind.

    Explanation
    ===========

    This function is defined as

    .. math ::
        H_\nu^{(1)} = J_\nu(z) + iY_\nu(z),

    where $J_\nu(z)$ is the Bessel function of the first kind, and
    $Y_\nu(z)$ is the Bessel function of the second kind.

    It is a solution to Bessel's equation.

    Examples
    ========

    >>> from sympy import hankel1
    >>> from sympy.abc import z, n
    >>> hankel1(n, z).diff(z)
    hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2

    See Also
    ========

    hankel2, besselj, bessely

    References
    ==========

    .. [1] https://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/

    c                 C   (   | j }|jdu rt| j | S d S rF   )r7   rG   hankel2r4   rH   rI   r2   r2   r3   rJ        
zhankel1._eval_conjugateN	rg   rh   ri   rj   r   rn   rB   r@   rJ   r2   r2   r2   r3   r     s
    $r   c                   @   r   )r   a  
    Hankel function of the second kind.

    Explanation
    ===========

    This function is defined as

    .. math ::
        H_\nu^{(2)} = J_\nu(z) - iY_\nu(z),

    where $J_\nu(z)$ is the Bessel function of the first kind, and
    $Y_\nu(z)$ is the Bessel function of the second kind.

    It is a solution to Bessel's equation, and linearly independent from
    $H_\nu^{(1)}$.

    Examples
    ========

    >>> from sympy import hankel2
    >>> from sympy.abc import z, n
    >>> hankel2(n, z).diff(z)
    hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2

    See Also
    ========

    hankel1, besselj, bessely

    References
    ==========

    .. [1] https://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/

    c                 C   r   rF   )r7   rG   r   r4   rH   rI   r2   r2   r3   rJ   =  r   zhankel2._eval_conjugateNr   r2   r2   r2   r3   r     s
    %r   c                    s   t   fdd}|S )Nc                    s   |j r	 | ||S d S r8   )rN   r   fnr2   r3   gD  s   zassume_integer_order.<locals>.gr   )r   r   r2   r   r3   assume_integer_orderC  s   r   c                   @   s*   e Zd ZdZdd Zdd Zd
ddZd	S )SphericalBesselBasea-  
    Base class for spherical Bessel functions.

    These are thin wrappers around ordinary Bessel functions,
    since spherical Bessel functions differ from the ordinary
    ones just by a slight change in order.

    To use this class, define the ``_eval_evalf()`` and ``_expand()`` methods.

    c                 K   s   t d)z@ Expand self into a polynomial. Nu is guaranteed to be Integer. 	expansionr   r1   r`   r2   r2   r3   _expandW  s   zSphericalBesselBase._expandc                 K   s   | j jr| jdi |S | S Nr2   )r4   
is_Integerr   r   r2   r2   r3   r^   [  s   z%SphericalBesselBase._eval_expand_funcr>   c                 C   s:   |dkr	t | || | jd | j| | jd  | j  S r?   )r	   rA   r4   r7   rC   r2   r2   r3   rE   `  s
   
zSphericalBesselBase.fdiffNrf   )rg   rh   ri   rj   r   r^   rE   r2   r2   r2   r3   r   K  s
    r   c                 C   s8   t | |t| tj| d  t |  d | t|  S Nr6   )r)   r   r   rv   r   r{   r<   r2   r2   r3   _jng  s   $r   c                 C   s8   t j| d  t|  d | t| t| |t|  S r   )r   rv   r)   r   r   r   r2   r2   r3   _ynl  s   $r   c                   @   sD   e Zd ZdZedd Zdd Zdd Zdd	 Zd
d Z	dd Z
dS )rT   a  
    Spherical Bessel function of the first kind.

    Explanation
    ===========

    This function is a solution to the spherical Bessel equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
          + 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0.

    It can be defined as

    .. math ::
        j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),

    where $J_\nu(z)$ is the Bessel function of the first kind.

    The spherical Bessel functions of integral order are
    calculated using the formula:

    .. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z},

    where the coefficients $f_n(z)$ are available as
    :func:`sympy.polys.orthopolys.spherical_bessel_fn`.

    Examples
    ========

    >>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(jn(0, z)))
    sin(z)/z
    >>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z
    True
    >>> expand_func(jn(3, z))
    (-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z)
    >>> jn(nu, z).rewrite(besselj)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2
    >>> jn(nu, z).rewrite(bessely)
    (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2
    >>> jn(2, 5.2+0.3j).evalf(20)
    0.099419756723640344491 - 0.054525080242173562897*I

    See Also
    ========

    besselj, bessely, besselk, yn

    References
    ==========

    .. [1] https://dlmf.nist.gov/10.47

    c                 C   sD   |j r|j r	tjS |jr|jrtjS tjS |tjtjfv r tjS d S r8   )	rV   r   rn   rN   r]   ro   rp   rt   rs   r9   r2   r2   r3   r=     s   zjn.evalc                 K       t td|  t|tj | S r}   )r   r   rP   r   r   r~   r2   r2   r3   r     s    zjn._eval_rewrite_as_besseljc                 K   s,   t j| ttd|   t| t j | S r}   )r   rv   r   r   r   r   r~   r2   r2   r3   r     s   ,zjn._eval_rewrite_as_besselyc                 K   s   t j| t| d | S r   )r   rv   rU   r~   r2   r2   r3   r     s   zjn._eval_rewrite_as_ync                 K      t | j| jS r8   )r   r4   r7   r   r2   r2   r3   r        z
jn._expandc                 C      | j jr| t|S d S r8   r4   r   r   rP   _eval_evalfr1   precr2   r2   r3   r        zjn._eval_evalfN)rg   rh   ri   rj   rl   r=   r   r   r   r   r   r2   r2   r2   r3   rT   r  s    9
rT   c                   @   s@   e Zd ZdZedd Zedd Zdd Zdd	 Zd
d Z	dS )rU   a  
    Spherical Bessel function of the second kind.

    Explanation
    ===========

    This function is another solution to the spherical Bessel equation, and
    linearly independent from $j_n$. It can be defined as

    .. math ::
        y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),

    where $Y_\nu(z)$ is the Bessel function of the second kind.

    For integral orders $n$, $y_n$ is calculated using the formula:

    .. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(yn(0, z)))
    -cos(z)/z
    >>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z
    True
    >>> yn(nu, z).rewrite(besselj)
    (-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2
    >>> yn(nu, z).rewrite(bessely)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2
    >>> yn(2, 5.2+0.3j).evalf(20)
    0.18525034196069722536 + 0.014895573969924817587*I

    See Also
    ========

    besselj, bessely, besselk, jn

    References
    ==========

    .. [1] https://dlmf.nist.gov/10.47

    c                 K   s0   t j|d  ttd|   t| t j | S r[   )r   rv   r   r   rP   r   r~   r2   r2   r3   r     s   0zyn._eval_rewrite_as_besseljc                 K   r   r}   )r   r   r   r   r   r~   r2   r2   r3   r     s    zyn._eval_rewrite_as_besselyc                 K   s   t j|d  t| d | S r   )r   rv   rT   r~   r2   r2   r3   r     s   zyn._eval_rewrite_as_jnc                 K   r   r8   )r   r4   r7   r   r2   r2   r3   r     r   z
yn._expandc                 C   r   r8   )r4   r   r   r   r   r   r2   r2   r3   r     r   zyn._eval_evalfN)
rg   rh   ri   rj   r   r   r   r   r   r   r2   r2   r2   r3   rU     s    .

rU   c                   @   sL   e Zd Zedd Zedd Zdd Zdd Zd	d
 Zdd Z	dd Z
dS )SphericalHankelBasec                 K   sN   | j }ttd|  t|tj ||t tj|d   t| tj |   S r?   )_hankel_kind_signr   r   rP   r   r   r   rv   r1   r;   r<   rd   hksr2   r2   r3   r     s   &z,SphericalHankelBase._eval_rewrite_as_besseljc                 K   sJ   | j }ttd|  tj| t| tj | |t t|tj |   S r}   )r   r   r   r   rv   r   r   r   r   r2   r2   r3   r     s   (z,SphericalHankelBase._eval_rewrite_as_besselyc                 K   s(   | j }t||t|t t||  S r8   )r   rT   r   rU   r   r   r2   r2   r3   r         "z'SphericalHankelBase._eval_rewrite_as_ync                 K   s(   | j }t|||t t||t  S r8   )r   rT   r   rU   r   r   r2   r2   r3   r   $  r   z'SphericalHankelBase._eval_rewrite_as_jnc                 K   sF   | j jr| jdi |S | j }| j}| j}t|||t t||  S r   )r4   r   r   r7   r   rT   r   rU   )r1   r`   r;   r<   r   r2   r2   r3   r^   (  s   z%SphericalHankelBase._eval_expand_funcc                 K   s2   | j }| j}| j}t|||t t||   S r8   )r4   r7   r   r   r   r   expand)r1   r`   r{   r<   r   r2   r2   r3   r   1  s    
zSphericalHankelBase._expandc                 C   r   r8   r   r   r2   r2   r3   r   @  r   zSphericalHankelBase._eval_evalfN)rg   rh   ri   r   r   r   r   r   r^   r   r   r2   r2   r2   r3   r     s    

	r   c                   @   s"   e Zd ZdZejZedd ZdS )rR   a  
    Spherical Hankel function of the first kind.

    Explanation
    ===========

    This function is defined as

    .. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z),

    where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
    Bessel function of the first and second kinds.

    For integral orders $n$, $h_n^(1)$ is calculated using the formula:

    .. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(hn1(nu, z)))
    jn(nu, z) + I*yn(nu, z)
    >>> print(expand_func(hn1(0, z)))
    sin(z)/z - I*cos(z)/z
    >>> print(expand_func(hn1(1, z)))
    -I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2
    >>> hn1(nu, z).rewrite(jn)
    (-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
    >>> hn1(nu, z).rewrite(yn)
    (-1)**nu*yn(-nu - 1, z) + I*yn(nu, z)
    >>> hn1(nu, z).rewrite(hankel1)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2

    See Also
    ========

    hn2, jn, yn, hankel1, hankel2

    References
    ==========

    .. [1] https://dlmf.nist.gov/10.47

    c                 K      t td|  t|| S r}   )r   r   r   r~   r2   r2   r3   _eval_rewrite_as_hankel1x     zhn1._eval_rewrite_as_hankel1N)	rg   rh   ri   rj   r   rn   r   r   r   r2   r2   r2   r3   rR   E  s
    0rR   c                   @   s$   e Zd ZdZej Zedd ZdS )rS   a  
    Spherical Hankel function of the second kind.

    Explanation
    ===========

    This function is defined as

    .. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z),

    where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
    Bessel function of the first and second kinds.

    For integral orders $n$, $h_n^(2)$ is calculated using the formula:

    .. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(hn2(nu, z)))
    jn(nu, z) - I*yn(nu, z)
    >>> print(expand_func(hn2(0, z)))
    sin(z)/z + I*cos(z)/z
    >>> print(expand_func(hn2(1, z)))
    I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2
    >>> hn2(nu, z).rewrite(hankel2)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2
    >>> hn2(nu, z).rewrite(jn)
    -(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
    >>> hn2(nu, z).rewrite(yn)
    (-1)**nu*yn(-nu - 1, z) - I*yn(nu, z)

    See Also
    ========

    hn1, jn, yn, hankel1, hankel2

    References
    ==========

    .. [1] https://dlmf.nist.gov/10.47

    c                 K   r   r}   )r   r   r   r~   r2   r2   r3   _eval_rewrite_as_hankel2  r   zhn2._eval_rewrite_as_hankel2N)	rg   rh   ri   rj   r   rn   r   r   r   r2   r2   r2   r3   rS   }  s
    0rS   sympy   c                    s  ddl m} dkr*ddlm  ddlm} || fddtd|d D S d	krZdd
lm zddl	m
 fdd}W n tyY   ddl	m fdd}Y nw tdfdd}| }|||}|g}	t|d D ]}
|||| }|	| qw|	S )a  
    Zeros of the spherical Bessel function of the first kind.

    Explanation
    ===========

    This returns an array of zeros of $jn$ up to the $k$-th zero.

    * method = "sympy": uses `mpmath.besseljzero
      <https://mpmath.org/doc/current/functions/bessel.html#mpmath.besseljzero>`_
    * method = "scipy": uses the
      `SciPy's sph_jn <https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_
      and
      `newton <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_
      to find all
      roots, which is faster than computing the zeros using a general
      numerical solver, but it requires SciPy and only works with low
      precision floating point numbers. (The function used with
      method="sympy" is a recent addition to mpmath; before that a general
      solver was used.)

    Examples
    ========

    >>> from sympy import jn_zeros
    >>> jn_zeros(2, 4, dps=5)
    [5.7635, 9.095, 12.323, 15.515]

    See Also
    ========

    jn, yn, besselj, besselk, bessely

    Parameters
    ==========

    n : integer
        order of Bessel function

    k : integer
        number of zeros to return


    r   )r   r   )besseljzero)dps_to_precc                    s0   g | ]}t  td  t|qS )g      ?)r   _from_mpmathr   
_to_mpmathint).0l)r   r{   r   r2   r3   
<listcomp>  s    zjn_zeros.<locals>.<listcomp>r6   scipy)newton)spherical_jnc                    s
    | S r8   r2   rX   )r{   r  r2   r3   <lambda>  s   
 zjn_zeros.<locals>.<lambda>)sph_jnc                    s    | d d S )Nr   r   r2   r  )r{   r  r2   r3   r    s    Unknown method.c                    s    dkr| |}|S t d)Nr   r  r   )ra   rX   r   )methodr   r2   r3   solver  s   
zjn_zeros.<locals>.solver)mathr   mpmathr   mpmath.libmp.libmpfr   r   scipy.optimizer   scipy.specialr  ImportErrorr  r   r   )r{   r   r  dpsmath_pir   ra   r  r   rootsir2   )r   r  r{   r   r   r  r  r3   jn_zeros  s4   -
r  c                   @   s4   e Zd ZdZdd Zdd ZdddZdd	d
ZdS )AiryBasezg
    Abstract base class for Airy functions.

    This class is meant to reduce code duplication.

    c                 C   s   |  | jd  S r   )funcr/   rH   r0   r2   r2   r3   rJ     s   zAiryBase._eval_conjugatec                 C   s   | j d jS r   )r/   r   r0   r2   r2   r3   r     s   zAiryBase._eval_is_extended_realTc                 K   sL   | j d }| }| j}|||| d }t||||  d }||fS )Nr   r>   )r/   rH   r  r   )r1   deepr`   r<   zcra   uvr2   r2   r3   as_real_imag  s   
zAiryBase.as_real_imagc                 K   s$   | j dd|i|\}}||t  S )Nr  r2   )r  r   )r1   r  r`   re_partim_partr2   r2   r3   _eval_expand_complex  s   zAiryBase._eval_expand_complexN)T)rg   rh   ri   rj   rJ   r   r  r  r2   r2   r2   r3   r  	  s    
r  c                   @   ^   e Zd ZdZdZdZedd ZdddZe	e
dd	 Zd
d Zdd Zdd Zdd ZdS )airyaia  
    The Airy function $\operatorname{Ai}$ of the first kind.

    Explanation
    ===========

    The Airy function $\operatorname{Ai}(z)$ is defined to be the function
    satisfying Airy's differential equation

    .. math::
        \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.

    Equivalently, for real $z$

    .. math::
        \operatorname{Ai}(z) := \frac{1}{\pi}
        \int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airyai
    >>> from sympy.abc import z

    >>> airyai(z)
    airyai(z)

    Several special values are known:

    >>> airyai(0)
    3**(1/3)/(3*gamma(2/3))
    >>> from sympy import oo
    >>> airyai(oo)
    0
    >>> airyai(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airyai(z))
    airyai(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airyai(z), z)
    airyaiprime(z)
    >>> diff(airyai(z), z, 2)
    z*airyai(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airyai(z), z, 0, 3)
    3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airyai(-2).evalf(50)
    0.22740742820168557599192443603787379946077222541710

    Rewrite $\operatorname{Ai}(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airyai(z).rewrite(hyper)
    -3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))

    See Also
    ========

    airybi: Airy function of the second kind.
    airyaiprime: Derivative of the Airy function of the first kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] https://dlmf.nist.gov/9
    .. [3] https://encyclopediaofmath.org/wiki/Airy_functions
    .. [4] https://mathworld.wolfram.com/AiryFunctions.html

    r6   Tc                 C   s   |j r/|tju rtjS |tju rtjS |tju rtjS |jr/tjdtdd t	tdd  S |jrCtjdtdd t	tdd  S d S )Nr   r>   )
	is_Numberr   rr   rs   ro   rt   rV   rn   r   r%   r:   r   r2   r2   r3   r=     s   


""zairyai.evalc                 C       |dkrt | jd S t| |Nr6   r   )airyaiprimer/   r	   rC   r2   r2   r3   rE        
zairyai.fdiffc                 G   s6  | dk rt jS t|}t|dkrj|d }td| |   td| | d   tt| tdd tdd   t|  t	| d tdd  tt| tdd tdd  t| d  t	| d tdd   | S t j
dtdd t  t	| t j
 t d  ttddt | t j
   t|  td| |   S )Nr   r6   r   r   r>   r   )r   ro   r   lenr   r   r   r   r   r%   rn   r{   rX   previous_termsr   r2   r2   r3   taylor_term  s"   L@Hzairyai.taylor_termc                 K   s`   t dd}t dd}t| t dd}t|jr.|t|  t| || t|||   S d S Nr6   r   r>   r   r   r!   r_   r   rP   r1   r<   rd   otttrY   r2   r2   r3   r        


,zairyai._eval_rewrite_as_besseljc                 K   s   t dd}t dd}t|t dd}t|jr,|t| t| || t|||   S |t||t| ||  |t||  t|||    S r)  r   r   r!   r]   r   rQ   r+  r2   r2   r3   r     s   


*<zairyai._eval_rewrite_as_besselic                 K   s~   t jdtdd ttdd  }|tddttdd  }|tg tddg|d d  |tg tddg|d d   S )Nr   r>   r6   	   r   )r   rn   r   r%   r   r(   r1   r<   rd   pf1pf2r2   r2   r3   _eval_rewrite_as_hyper  s   "@zairyai._eval_rewrite_as_hyperc                 K   s"  | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|||  | || |||    }
|||  |||   }tj|
tj	 t
| |
tj	 td t|   S d S d S d S 	Nr   r6   r   )excludedmr{   r   )r/   free_symbolsr%  popr   matchrN   r   r   rn   r  r   airybir1   r`   r   symbsr<   r   r7  r8  r{   Mpfnewargr2   r2   r3   r^     *   

$2zairyai._eval_expand_funcNr6   rg   rh   ri   rj   nargs
unbranchedrl   r=   rE   staticmethodr   r(  r   r   r4  r^   r2   r2   r2   r3   r  $  s    X

	r  c                   @   r  )r<  a  
    The Airy function $\operatorname{Bi}$ of the second kind.

    Explanation
    ===========

    The Airy function $\operatorname{Bi}(z)$ is defined to be the function
    satisfying Airy's differential equation

    .. math::
        \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.

    Equivalently, for real $z$

    .. math::
        \operatorname{Bi}(z) := \frac{1}{\pi}
                 \int_0^\infty
                   \exp\left(-\frac{t^3}{3} + z t\right)
                   + \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airybi
    >>> from sympy.abc import z

    >>> airybi(z)
    airybi(z)

    Several special values are known:

    >>> airybi(0)
    3**(5/6)/(3*gamma(2/3))
    >>> from sympy import oo
    >>> airybi(oo)
    oo
    >>> airybi(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airybi(z))
    airybi(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airybi(z), z)
    airybiprime(z)
    >>> diff(airybi(z), z, 2)
    z*airybi(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airybi(z), z, 0, 3)
    3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airybi(-2).evalf(50)
    -0.41230258795639848808323405461146104203453483447240

    Rewrite $\operatorname{Bi}(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airybi(z).rewrite(hyper)
    3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))

    See Also
    ========

    airyai: Airy function of the first kind.
    airyaiprime: Derivative of the Airy function of the first kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] https://dlmf.nist.gov/9
    .. [3] https://encyclopediaofmath.org/wiki/Airy_functions
    .. [4] https://mathworld.wolfram.com/AiryFunctions.html

    r6   Tc                 C   s   |j r/|tju rtjS |tju rtjS |tju rtjS |jr/tjdtdd t	tdd  S |jrCtjdtdd t	tdd  S d S )Nr   r6      r>   )
r  r   rr   rs   rt   ro   rV   rn   r   r%   r   r2   r2   r3   r=   .  s   


""zairybi.evalc                 C   r!  r"  )airybiprimer/   r	   rC   r2   r2   r3   rE   =  r$  zairybi.fdiffc                 G   s  | dk rt jS t|}t|dkrW|d }td| tttddt | t j	   t
| t j	 t d  | t j	 tttddt | t j   t
| d t d   | S t j	tddt  t| t j	 t d  tttddt | t j	   t
|  td| |   S )Nr   r6   r   r   r>   rH  )r   ro   r   r%  r   r    r   r   r   rn   r   r   r   r   r%   r&  r2   r2   r3   r(  C  s   @<Hzairybi.taylor_termc                 K   s`   t dd}t dd}t| t dd}t|jr.t| d t| || t|||   S d S r)  r*  r+  r2   r2   r3   r   R  r.  zairybi._eval_rewrite_as_besseljc                 K   s   t dd}t dd}t|t dd}t|jr.t|td t| || t|||   S t||}t|| }t||t| ||  || t|||    S r)  r/  r1   r<   rd   r,  r-  rY   r   r   r2   r2   r3   r   Y  s   


.
2zairybi._eval_rewrite_as_besselic                 K   sz   t jtddttdd  }|tdd ttdd }|tg tddg|d d  |tg tddg|d d   S )Nr   rH  r>   r6   r0  r   )r   rn   r   r%   r   r(   r1  r2   r2   r3   r4  d  s   @zairybi._eval_rewrite_as_hyperc                 K   s"  | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|||  | || |||    }
|||  |||   }tjt	dtj
|
  t| tj
|
 t|   S d S d S d S r5  )r/   r9  r%  r:  r   r;  rN   r   r   r   rn   r  r<  r=  r2   r2   r3   r^   i  rB  zairybi._eval_expand_funcNrC  rD  r2   r2   r2   r3   r<    s    Z

r<  c                   @   V   e Zd ZdZdZdZedd ZdddZdd	 Z	d
d Z
dd Zdd Zdd ZdS )r#  a%  
    The derivative $\operatorname{Ai}^\prime$ of the Airy function of the first
    kind.

    Explanation
    ===========

    The Airy function $\operatorname{Ai}^\prime(z)$ is defined to be the
    function

    .. math::
        \operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airyaiprime
    >>> from sympy.abc import z

    >>> airyaiprime(z)
    airyaiprime(z)

    Several special values are known:

    >>> airyaiprime(0)
    -3**(2/3)/(3*gamma(1/3))
    >>> from sympy import oo
    >>> airyaiprime(oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airyaiprime(z))
    airyaiprime(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airyaiprime(z), z)
    z*airyai(z)
    >>> diff(airyaiprime(z), z, 2)
    z*airyaiprime(z) + airyai(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airyaiprime(z), z, 0, 3)
    -3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airyaiprime(-2).evalf(50)
    0.61825902074169104140626429133247528291577794512415

    Rewrite $\operatorname{Ai}^\prime(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airyaiprime(z).rewrite(hyper)
    3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3))

    See Also
    ========

    airyai: Airy function of the first kind.
    airybi: Airy function of the second kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] https://dlmf.nist.gov/9
    .. [3] https://encyclopediaofmath.org/wiki/Airy_functions
    .. [4] https://mathworld.wolfram.com/AiryFunctions.html

    r6   Tc                 C   sR   |j r|tju rtjS |tju rtjS |jr'tjdtdd ttdd  S d S )Nr   r6   )	r  r   rr   rs   ro   rV   rv   r   r%   r   r2   r2   r3   r=     s   

"zairyaiprime.evalc                 C   *   |dkr| j d t| j d  S t| |r"  )r/   r  r	   rC   r2   r2   r3   rE        
zairyaiprime.fdiffc                 C   R   | j d |}t| tj|dd}W d    n1 sw   Y  t||S Nr   r6   )
derivative)r/   r   r+   r*   r  r   r   r1   r   r<   resr2   r2   r3   r     
   
zairyaiprime._eval_evalfc                 K   sP   t dd}t| t dd}t|jr&|d t| || t|||   S d S Nr>   r   )r   r   r!   r_   rP   r1   r<   rd   r-  rY   r2   r2   r3   r     s
   

&z$airyaiprime._eval_rewrite_as_besseljc                 K   s   t dd}t dd}|t|t dd }t|jr(|d t||t| |  S t|t dd}t||}t|| }||d | t|||  |t| ||    S r)  )r   r   r!   r]   rQ   rJ  r2   r2   r3   r     s   



2z$airyaiprime._eval_rewrite_as_besselic                 K   s   |d ddt dd  tt dd  }dtddtt dd  }|tg t ddg|d d  |tg t ddg|d d   S )Nr>   r   r6      r0  )r   r%   r   r(   r1  r2   r2   r3   r4    s   (@z"airyaiprime._eval_rewrite_as_hyperc                 K   s"  | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|| |||   |||  |  }
|||  |||   }tj|
tj	 t
| |
tj	 td t|   S d S d S d S r5  )r/   r9  r%  r:  r   r;  rN   r   r   rn   r#  r   rI  r=  r2   r2   r3   r^     *   

$2zairyaiprime._eval_expand_funcNrC  rg   rh   ri   rj   rE  rF  rl   r=   rE   r   r   r   r4  r^   r2   r2   r2   r3   r#    s    Q


r#  c                   @   rK  )rI  a6  
    The derivative $\operatorname{Bi}^\prime$ of the Airy function of the first
    kind.

    Explanation
    ===========

    The Airy function $\operatorname{Bi}^\prime(z)$ is defined to be the
    function

    .. math::
        \operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airybiprime
    >>> from sympy.abc import z

    >>> airybiprime(z)
    airybiprime(z)

    Several special values are known:

    >>> airybiprime(0)
    3**(1/6)/gamma(1/3)
    >>> from sympy import oo
    >>> airybiprime(oo)
    oo
    >>> airybiprime(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airybiprime(z))
    airybiprime(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airybiprime(z), z)
    z*airybi(z)
    >>> diff(airybiprime(z), z, 2)
    z*airybiprime(z) + airybi(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airybiprime(z), z, 0, 3)
    3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airybiprime(-2).evalf(50)
    0.27879516692116952268509756941098324140300059345163

    Rewrite $\operatorname{Bi}^\prime(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airybiprime(z).rewrite(hyper)
    3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)

    See Also
    ========

    airyai: Airy function of the first kind.
    airybi: Airy function of the second kind.
    airyaiprime: Derivative of the Airy function of the first kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] https://dlmf.nist.gov/9
    .. [3] https://encyclopediaofmath.org/wiki/Airy_functions
    .. [4] https://mathworld.wolfram.com/AiryFunctions.html

    r6   Tc                 C   s~   |j r,|tju rtjS |tju rtjS |tju rtjS |jr,dtdd ttdd S |jr=dtdd ttdd S d S )Nr   r6   rH  )	r  r   rr   rs   rt   ro   rV   r   r%   r   r2   r2   r3   r=   u  s   


zairybiprime.evalc                 C   rL  r"  )r/   r<  r	   rC   r2   r2   r3   rE     rM  zairybiprime.fdiffc                 C   rN  rO  )r/   r   r+   r*   r<  r   r   rQ  r2   r2   r3   r     rS  zairybiprime._eval_evalfc                 K   sR   t dd}|t| t dd }t|jr'| td t| |t||  S d S rT  r*  rU  r2   r2   r3   r     s
   

$z$airybiprime._eval_rewrite_as_besseljc                 K   s   t dd}t dd}|t|t dd }t|jr*|td t| |t||  S t|t dd}t||}t|| }t||t| ||  |d | t|||    S r)  r/  rJ  r2   r2   r3   r     s   


"
6z$airybiprime._eval_rewrite_as_besselic                 K   s|   |d dt dd ttdd  }t ddttdd }|tg tddg|d d  |tg tddg|d d   S )Nr>   r   rH  r6   rV  r0  )r   r%   r   r(   r1  r2   r2   r3   r4    s   $@z"airybiprime._eval_rewrite_as_hyperc                 K   s"  | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|| |||   |||  |  }
|||  |||   }tjt	d|
tj
  t| |
tj
 t|   S d S d S d S r5  )r/   r9  r%  r:  r   r;  rN   r   r   r   rn   r#  rI  r=  r2   r2   r3   r^     rW  zairybiprime._eval_expand_funcNrC  rX  r2   r2   r2   r3   rI    s    S

rI  c                   @   sF   e Zd ZdZedd ZdddZdd Zd	d
 Zdd Z	dd Z
dS )marcumqa  
    The Marcum Q-function.

    Explanation
    ===========

    The Marcum Q-function is defined by the meromorphic continuation of

    .. math::
        Q_m(a, b) = a^{- m + 1} \int_{b}^{\infty} x^{m} e^{- \frac{a^{2}}{2} - \frac{x^{2}}{2}} I_{m - 1}\left(a x\right)\, dx

    Examples
    ========

    >>> from sympy import marcumq
    >>> from sympy.abc import m, a, b
    >>> marcumq(m, a, b)
    marcumq(m, a, b)

    Special values:

    >>> marcumq(m, 0, b)
    uppergamma(m, b**2/2)/gamma(m)
    >>> marcumq(0, 0, 0)
    0
    >>> marcumq(0, a, 0)
    1 - exp(-a**2/2)
    >>> marcumq(1, a, a)
    1/2 + exp(-a**2)*besseli(0, a**2)/2
    >>> marcumq(2, a, a)
    1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)

    Differentiation with respect to $a$ and $b$ is supported:

    >>> from sympy import diff
    >>> diff(marcumq(m, a, b), a)
    a*(-marcumq(m, a, b) + marcumq(m + 1, a, b))
    >>> diff(marcumq(m, a, b), b)
    -a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Marcum_Q-function
    .. [2] https://mathworld.wolfram.com/MarcumQ-Function.html

    c                 C   sT  |t ju r |t ju r|t ju rt jS t||d t j t| S |t ju r7|t ju r7ddt|d t j   S ||kry|t ju rSdt|d  td|d   t j S |dkryt jt jt|d   td|d   t|d  td|d   S |jr|jr|jrt jS t||d t j t| S |jr|jrddt|d t j   S d S d S r   )	r   ro   r'   r   r%   r   rn   rQ   rV   )r:   r8  rY   r   r2   r2   r3   r=     s$   

&Dzmarcumq.evalr>   c                 C   s   | j \}}}|dkr|t||| td| ||  S |dkr@||  ||d   t|d |d   d  t|d ||  S t| |)Nr>   r6   r   )r/   rY  r   rQ   r	   )r1   rD   r8  rY   r   r2   r2   r3   rE     s   "B
zmarcumq.fdiffc                 K   sp   ddl m} |dttdj}|d|  ||| t|d |d   d  t|d ||  ||tj	g S )Nr   )IntegralrX   r6   r>   )
sympy.integrals.integralsrZ  getr   r   namer   rQ   r   rs   )r1   r8  rY   r   rd   rZ  rX   r2   r2   r3   _eval_rewrite_as_Integral  s
   
@z!marcumq._eval_rewrite_as_Integralc                 K   sb   ddl m} |dtd}t|d |d   d ||| | t|||  |d| tjg S )Nr   )Sumr   r>   r6   )sympy.concrete.summationsr_  r\  r   r   rQ   r   rs   )r1   r8  rY   r   rd   r_  r   r2   r2   r3   _eval_rewrite_as_Sum  s   Fzmarcumq._eval_rewrite_as_Sumc                    s    |krK|dkrdt  d  td d   d S |jrM|dkrOt fddtd|D }tjt  d  td d  d  t  d  |  S d S d S d S )Nr6   r>   r   c                 3   s    | ]
}t | d  V  qdS )r>   N)rQ   )r   r  rY   r2   r3   	<genexpr>$  s    z3marcumq._eval_rewrite_as_besseli.<locals>.<genexpr>)r   rQ   r   sumr   r   r   )r1   r8  rY   r   rd   r   r2   rb  r3   r     s   $8z marcumq._eval_rewrite_as_besselic                 C   s   t dd | jD rdS d S )Nc                 s   s    | ]}|j V  qd S r8   )rV   )r   r   r2   r2   r3   rc  (  s    z(marcumq._eval_is_zero.<locals>.<genexpr>T)allr/   r0   r2   r2   r3   _eval_is_zero'  s   zmarcumq._eval_is_zeroNrf   )rg   rh   ri   rj   rl   r=   rE   r^  ra  r   rf  r2   r2   r2   r3   rY    s    0

	rY  N)r   r   )U	functoolsr   
sympy.corer   sympy.core.addr   sympy.core.cacher   sympy.core.exprr   sympy.core.functionr   r	   r
   sympy.core.logicr   r   sympy.core.numbersr   r   r   sympy.core.powerr   sympy.core.symbolr   r   r   sympy.core.sympifyr   (sympy.functions.combinatorial.factorialsr   (sympy.functions.elementary.trigonometricr   r   r   r   #sympy.functions.elementary.integersr   &sympy.functions.elementary.exponentialr   r   (sympy.functions.elementary.miscellaneousr   r   r   $sympy.functions.elementary.complexesr    r!   r"   r#   r$   'sympy.functions.special.gamma_functionsr%   r&   r'   sympy.functions.special.hyperr(   sympy.polys.orthopolysr)   r	  r*   r+   r,   rP   r   rQ   r   r   r   r   r   r   r   rT   rU   r   rR   rS   r  r  r  r<  r#  rI  rY  r2   r2   r2   r3   <module>   sh    F 1   ./XB98
8T - 2  %